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Abstract

Current efforts in the tissue engineering field are being directed towards the creation of

platforms which will facilitate in instructing cells towards biologically relevant outcomes

such as stem cell differentiation and disease pathophysiology. Traditional fabrication

methods serve as a limiting factor for the production of such platforms as they lack

feature and geometric complexity. Additive Manufacturing (AM) offers advantage over

said methods by affording designers creative freedom and great control over printed

constructs. Such constructs can then be used to create appropriate models for studying

a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW)

printing of conjugated polymer-based constructs using collagen-polypyrrole (Col-PPy)

is presented. Potential for Col-PPy constructs as electro-conductive and electro-active

platforms is evaluated through electrical conductivity and ionic conductivity characteri-

zation, and demonstrated through bilayer performance and spectrometry evaluations.

Finally, degree of polymerization and topography are reported using optical and SEM

imaging.

Keywords: Tissue engineering, 3D printing, Conjugated Polymers, Polypyrrole, Colla-

gen
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Summary for Lay Audience

The cellular micro-environment is known to be complex, three-dimensional and intri-

cate in its ability to instruct cells through an interplay of electrical, chemical, biochemical

and/or mechanical stimulation. Each cell type of interest to tissue engineers is known to

be housed in its tissue-specific niche, with unique composition and consequent proper-

ties. Although researchers have successfully devised many platforms and mechanisms

to achieve said stimulations in isolation or in in vitro settings, they remain challenged to

reproduce these complexities in 3D cell culture settings, for extended periods of time

and in a combinatory manner.

Conjugated polymer (CP) materials, such as Polypyrrole (PPy), are a branch of

smart materials that are capable of emulating said unique properties of native cell

micro-environments whilst retaining the tailorability of these properties familiar to tissue

engineering researchers. However, to date, no platform reminiscent of the native cellular

micro-environment capable of imparting combined electrochemomechanical stimulation

to instruct cells towards biologically relevant outcomes has been developed. This has

been largely because traditional fabrication methods for CPs serve as a limiting factor for

the production of such platforms, where produced structures lack feature and geometric

complexity inherent to native cell micro-environments.

Additive Manufacturing (AM) offers advantage over said methods by affording design-

ers creative freedom and great control over printed constructs, which can then be used

to create appropriate models for studying a plethora of tissues and structures. Presented

in this thesis is a novel AM methodology for creating CP-based constructs. Specifically,

a Direct-Ink Write (DIW) printing methodology for creating collagen-polypyrrole (Col-

PPy) constructs is presented. This dissertation explores the design-ability inherent to

AM processes and retention of favourable properties inherent to CP-based structures.

Investigations to this end demonstrate 3D printed Col-PPy constructs to be electro-

iii
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conductive, electro-active and cyto-compatible, while the degree of response from these

constructs is open to modulation. Essentially, researchers armed with such a platform

are now capable of modulating the morphology and geometry, electro-conductive and

electro-active properties of their 3D printed constructs in 3D cell culture settings, for

extended periods of time and in a combinatory manner.

iv
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It is strange that only extraordinary men make the discoveries, which later

appear so easy and simple.

– G. C. Lichtenberg

Professor of Physics

University of Göttingen, 1769–99
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Dedication

Dedicated to everyone.
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Chapter 1

Introduction

3D printing, also known as additive manufacturing (AM), enables designers the ability to

manipulate computer aided designs (CAD) and produce structures with various geomet-

ric and feature complexities, namely: internal and bulk morphology at the macroscopic

to microscopic level. AM enables designers with the ability to produce said structures

quickly, efficiently and with a high degree of uniformity (Atala et al., 2012; Kang et al.,

2016). Past researchers have been successful in 3D printing scaffolds of pure inks

or composites of alginate, collagen, chitosan, extracellular matrix proteins, etc. for tis-

sue engineering and biomedical applications (Johnson et al., 2015; Pati et al., 2015;

Jose et al., 2016; Donderwinkel et al., 2017). AM fabrication of biomimetic scaffolds

or constructs using these biomaterials is of specific interest, for it allows researchers

the ability to design and better replicate tissue-based complexities, such as layering

and orientation inherent to physiological micro-environment, in accordance with the

application at hand (Zhu et al., 2016; Guillemot et al., 2010; Catros et al., 2011; Jia et al.,

2016).

Cells are as much of a product of their environment as their environment is a prod-

uct of cellular activity. The extracellular matrix (ECM) constitutes the native cellular

micro-environment. The ECM is a complex network of proteins, glycoproteins, and

1
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polysaccharides; it provides structure and is essential for healthy tissue function as it

surrounds all cells (Hubbell, 1995; Watt and Hogan, 2000; Fuchs, 2009). The ECM as

the integral component of the native cellular micro-environment influences cell behaviour.

Each ECM is tissue specific; differing in porosity, shape, topography, mechanical proper-

ties (stiffness and elasticity), bioactivity and electro-conductivity that define and modulate

cellular structure and activity (Akhmanova et al., 2015; McBeath et al., 2004; Holst et al.,

2010). The ECM in concert with biochemical and biophysical factors works to impart

mechanical, electrical and biochemical signals to cells by mediating external environ-

mental stimuli and by holding signal molecules in reserve for later release to cells during

specific events such as wound healing, tissue regeneration or bacterial infection (Lane

et al., 2014; Katayama et al., 2006; Rosso et al., 2004). Despite extensive work done on

elucidating the mechanisms behind cell-ECM interactions and how these interactions

dictate cell behaviour, researchers are challenged to replicate the functional aspects

of the cellular micro-environment’s physical parameters such as mechanotransduction,

electrical and biochemical activity in a combinatory manner to assess their influence

on cells, tissues, and disease pathophysiology (Iskratsch et al., 2014; Gattazzo et al.,

2014).

This gap in knowledge is vital to the current state of tissue engineering research.

Researchers have a need to elucidate the workings of the cellular micro-environment,

whilst simultaneously maintaining control over the scale, repeatability and morphology

of constructs used in evaluations. Maintaining such control over the constructs is vital to

understand under which conditions cell behaviour can be influenced towards biologically

relevant outcomes. This need could be addressed by utilizing substrates capable of

an amalgamated, complex approach of stimulating cells and emulating the cellular

micro-environment. One route to achieving this would require using AM technology

where researchers may be able to exercise acute control over the physical properties

and uniformity of their constructs. The second component of such a platform capable of
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an amalgamated, complex approach needed to address said gap in knowledge requires

the ability to modulate cell behaviour in a controlled manner.

Electro-active polymer (EAP) materials exhibit direct physical responses such as

change in volume, colour or shape in response to external stimuli, such as electrical

current or applied potential (Bar-Cohen et al., 2007). Conjugated polymer (CP) materials

are a subtype of EAPs. CPs are intrinsically conductive, repeating monomers capable

of conformational change, i.e. deformation or expansion, when electrically stimulated

at low voltages (Guiseppi-Elie, 2010; Bar-Cohen et al., 2007). These CPs, including

polyaniline (PAni), polypyrrole (PPy), etc. have been used in the past for soft robotics,

artificial muscles, lab-on-a-chip applications, as drug delivery/release systems, as well

as hydrogels, biosensors and neural interface electrodes (Ates, 2013; Guiseppi-Elie,

2010; Trivedi et al., 2008; Svennersten et al., 2011; Berti et al., 2017). In addition

to their electro-active characteristics which have inspired investigations into actuator

and drug delivery/release system applications, CPs are electrically conductive. These

properties of CPs makes them highly attractive candidates for studying the effects

of mechanotransduction, electrical and biochemical stimulation in an amalgamated

manner. Although several CP-natural/synthetic-based composites capable of imparting

electrochemomechanical stimulation on to cells exist in literature, produced structures

are greatly limited in feature, size and geometric complexity.

By harnessing AM techniques and the associated properties of CPs, such as PPy,

structures with design-ability inherent to AM processes and the electro-active properties

inherent to CP-based structures can be produced. Essentially, researchers armed with

such a platform would be capable of modulating the morphology, electro-conductive and

electro-active properties of their 3D printed constructs, in a 3D cell-culture setting. This

notion, however, remains largely uncharted territory in literature. The work presented in

this thesis investigates the feasibility of applying an AM technique towards producing CP-

based structures, which hold potential for simulating and stimulating in vivo complexities



www.manaraa.com

Introduction 4

in a combined manner. To this end, a collagen-pyrrole (Col-Py) blend is used to develop

novel DIW PPy-based structures. The retention of the favourable properties associated

with PPy in the produced constructs are subsequently evaluated.

1.1 Objectives

This research project aims to explore the electromechanical properties associated with

PPy by developing innovative AM engineered materials and assessing their potential

for biomedical and tissue engineering applications. These goals are embodied by the

following research objectives:

• Investigate methods for 3D printing Col-PPy constructs. The first objective is

towards combining a CP, i.e. PPy, with a scaffolding biomaterial, i.e. collagen,

to assess the feasibility of applying DIW AM technology for the production of

CP-based structures. The characteristics of the printing ink will be assessed

using rheological characterization. Control over the internal morphology of the

structures produced with the developed AM methodology will be evaluated using

optical imaging and SEM.

• Demonstrate the application of 3D printed PPy-based constructs. The second

objective will build on the outcomes of the first objective and evaluate the effi-

cacy of the 3D printed Col-PPy structures for retention of favourable properties

prevalent in tissue engineering research tradition. Specifically, electro-activity,

actuation and electrical conductivity properties of DIW printed constructs will be

assessed following direct electrical stimulation. Additionally, cyto-compatibility will

be evaluated via cell culture experiments to provide insight to the potential utility

of 3D printed collagen-PPy constructs as means for studying cellular behaviour, in

a 3D cell culture in vitro environment.
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1.2 Major contributions

This thesis conveys the following major contributions to the scientific body of knowledge:

• A Direct-ink write fabrication methodology for the production of collagen-polypyrrole

structures. The first-ever study to establish a DIW fabrication protocol for collagen-

PPy structures is presented. This work developed a novel AM methodology for

creating designable Col-PPy structures of geometric and feature complexities.

The developed Col-PPy fabrication methodology involves the use of a hydrogel

scaffolding, i.e. collagen, in concert with PPy to create novel, 3D printable PPy-

based hydrogel structures. This thesis demonstrated the effect of increasing PPy

concentration on the rheological properties and DIW printability of the DIW ink.

Differences in construct porosity, morphology, and topography of the 3D printed

constructs were evaluated using optical and SEM imaging. Elemental mapping is

performed to evaluate the elemental composition of 3D printed Col-PPy constructs.

• A novel electro-conductive, electro-active, cyto-compatible, 3D printed collagen-

polypyrrole construct. The retention of favourable properties associated with the

developed 3D printed electro-active and electro-conductive PPy-based hydrogel

constructs is evaluated. Electro-conductivity, electro-activity and actuation prop-

erties of 3D printed structures are reported in this thesis. Cyto-compatibility is

qualitatively established for the 3D printed collagen-PPy constructs by culturing

human BJ fibroblast cells for 7 days. This thesis offers an upgrade on traditional

fabrication methodologies for PPy-based structures and establishes potential utility

of DIW PPy-based structures for better emulating in vivo complexities in vitro.

• A platform for potentially studying cellular behaviour, stem cell differentiation and

disease pathophysiology in response to stimulation via novel 3D DIW printed

collagen-polypyrrole constructs established. The potential of DIW Col-PPy con-

structs as an instructive substrate capable of imparting electro-conductive stim-
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ulation and potential of DIW Col-PPy constructs as electro-active constructs as

drug delivery/release systems was established and is discussed in Chapter 4 and

Chapter 5.

1.3 Organization of the thesis

The following chapter, Chapter 2, Background offers a brief introduction in conventional

AM techniques. The chapter then summarizes the fundamental knowledge in the usage

and choices for scaffolding biomaterials for tissue engineering applications, properties

of the ECM and current state of the art dedicated to replicating said properties in vitro.

The chapter then summarizes usage of PPy and its electrochemistry, characteristics,

synthesis techniques for biomedical applications. Subsequently, the current state of

the art for PPy-based structures, followed by a survey on the potential utility of using

collagen and PPy in concert, opposed to standalone constructs, is discussed.

In accordance with the aforementioned objectives, the remainder of the thesis is

organized as follows: Chapter 3, Materials and Methods for the Direct-Ink Write Additive

Manufacturing of Col-PPy constructs, details the experimental methodology adopted

which lead to the development of an AM fabrication protocol which blends a CP with an

ECM protein to create the first-ever DIW printed PPy-based structures, as well as prelim-

inary investigations and the development of a freeze-drying apparatus. Included in this

chapter is the methodology adopted for characterization of the physical and functional

properties of the novel DIW printed PPy-based structures. Chapter 4, Characterization

of DIW Col-PPy constructs: Part 1, includes the first half of results from evaluations on

the physical and functional properties of the 3D printed constructs, namely: rheology,

optical imaging, electro-conductivity and electro-activity via cyclic voltammetry and spec-

trometry. Results from the second half of aforementioned characterizations are included

in Chapter 5, Characterization of DIW Col-PPy constructs: Part 2. Namely, actuation,



www.manaraa.com

LIST OF REFERENCES 7

SEM and tensile evaluations, as well as cell culture experiments and topographical

characterization using CLSM. Lastly, Chapter 6, Concluding Remarks, summarizes the

conclusions of the work, reaffirms the major contributions to knowledge and postulates

recommendations for future research using the AM fabrication methodology developed

in this thesis.
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Chapter 2

Background and State of the Art

This chapter will summarize the relevant background information on the AM technique

utilized in this thesis, similarities between the native cellular micro-environment and

intrinsic properties of PPy-based constructs which will orient the reader on the motivation

for this thesis. Various AM techniques are briefly discussed, with associated advantages

and disadvantages of each technique. Then, background knowledge on the ECM

which constitutes the structural environment of cells, as well as major biochemical

and biophysical properties associated with the ECM that govern cell behaviour, tissue-

level remodelling and regeneration are discussed. Additionally, current state of the art

regarding investigations which aspire to emulate said properties are reviewed, with a

focus on collagen-based and PPy-based constructs. Finally, the electrochemistry and

functional characteristics, synthesis techniques, and applications of PPy, in terms of

tissue engineering applications, are discussed.

2.1 Review of Additive Manufacturing Technology

The main technology involved in this thesis is AM. In recent decades, there has been

great interest in developing this technology for industrial, biomedical, and lab-on-a-chip

11
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applications (Kang et al., 2016; Ngo et al., 2018; Wallin et al., 2018; Carrow et al., 2015;

Wang et al., 2017; Ambrosi and Pumera, 2016). AM is a rapid prototyping technique

that involves laying down successive layers, one on top of the other, that is, in an

additive manner to produce structures in accordance with a predetermined CAD model

(ASTM Standard ASTM52900 - 15, 2015). The CAD model is easy to manipulate and

subsequent versions are easily revised. 3D printing is of high utility because of the

creative freedom it affords the designer. The designer is able to produce 3D constructs

efficiently and with extreme precision over the structure at the micro- and macroscopic

level (Melchels et al., 2012). In addition to control of scale, the designer is capable

of controlling internal morphology and geometric complexity of the printed construct.

Geometry plays an important role in dictating form, which in certain cases dictates

function.

Another advantage inherent to many 3D printing methods is reduced waste, meaning

that only material required to build the final 3D object is consumed during the fabrication

process. AM techniques have been traditionally divided according to their fabrication

principles, namely: photopolymerization, powder based fusion, sheet lamination and

extrusion-based (Ambrosi and Pumera, 2016). AM techniques shown in Figure 2.1 and

Figure 2.2 are currently being employed towards generating novel implants, devices,

substrates, scaffolds and structures from various build materials, for industries ranging

from automotive to architecture to medicine (Ambrosi and Pumera, 2016; Ozbolat and

Hospodiuk, 2016).

Extrusion-based printing methods involve deposition of material from a nozzle, after

the material has undergone prior liquefaction treatment, where the movements of the

nozzle reflect the CAD model. The most common method associated with this process

is called Fused Deposition Modelling (FDM). FDM represents the conventional form of

3D printing method most recognized (Figure 2.2 (A)). 3D objects are produced when

the thermoplastic (e.g. polylactic acid (PLA), acrylonitrile butadiene styrene (ABS),
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Figure 2.1: The AM techniques (A) Stereolithography (SLA), (B) Lamination object
manufacturing, (C) Selective Laser Sintering (SLS) (Ambrosi et al., 2016, included with
permission)

A B

Figure 2.2: The AM techniques (A) Fused Deposition Modelling (FDM), (B) Direct-ink
Write (DIW) (Ambrosi et al., 2016, included with permission).
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polyvinyl alcohol (PVA), etc.) material is deposited in a semi-molten state from a heated

nozzle. The deposited material solidifies as it cools, and subsequent layers are added

as additional material is deposited on top of the previous. Although FDM doesn’t allow

for much variety in applications as the material is restricted to thermoplastics and the

resolution is limited by nozzle diameter. However, anyone armed with a computer and

a FDM-based 3D printer can produce 3D, complex structures at high speed and low

cost due to its simplicity and commercial availability (Hutmacher et al., 2001; Zein et al.,

2002).

Another type of extrusion-based printing method commonly employed is called direct-

ink write (DIW), shown in Figure 2.2 (B). This method was pioneered by researchers at

the Freiburg Materials Research Center, Freiburg, Germany, circa 2000 (Landers et al.,

2002). In DIW, a viscous liquid in the form of a paste, dispersion or solution, typically

contained in a syringe is connected to a pneumatic dispensing system, is forced through

a nozzle and continuously deposited to produce a 3D structure (Landers et al., 2002;

Hinton et al., 2015). This technique’s main advantage lies in the array of materials

that can be used as inks, including: ceramics, hydrogels, reactive polymers and their

composites, ECM-derived proteins (Chia and Wu, 2015; Pati, Ha, Jang, Han, Rhie and

Cho, 2015; Hinton et al., 2015). For tissue engineers, prior to the development of this

AM method, scaffolds and structures were manufactured as sheets, in bulky casts or

by employing moulds. This limits the applications of constructs, as interior porosity

and morphology is limited to material properties, chemical or physical post-fabrication

treatments and not directly tuneable. The utility of these constructs, for instance as cell-

delivery platforms, is limited by size as larger scaffolds cannot receive sufficient diffusion

of nutrients, leading to local cell death (Galban and Locke, 1997; Fedorovich et al., 2011).

A major challenge for DIW printed structures remains the deposited ink’s ’bleeding effect’.

This effect manifests as 3D printed extruded widths of low viscosity materials are unable

to maintain their geometry as extruded. Inadequate mechanical integrity is associated



www.manaraa.com

CHAPTER 2. BACKGROUND 15

with the fluid state of these low viscosity print materials, which in turn leads to limitations

on size, resolution, complexity and geometric features producible (Ambrosi and Pumera,

2016; Chia and Wu, 2015). However, due to contemporaneous research and advances

in DIW printing technology, hydrogel inks such as gelatin, agar, alginate, fibrin, silk, and

collagen have been successfully 3D printed, only after print parameters were optimized

and matched to the viscosity of the ink, or by the inclusion of sacrificial support materials

such as PVA, a water dissolvable polymer, and then processed post-printing for gelation

(Kang et al., 2016; Fedorovich et al., 2008; Woodfield et al., 2009). DIW printing is highly

advantageous for it allows the designer to produce structures quickly, efficiently and en

masse (Chia and Wu, 2015).

Recently, DIW techniques have been furthered developed to incorporate cells into the

fluid-material to create bio-inks. This development inspired a new avenue of research

which is of great interest to tissue engineering and biomedical applications called

bioprinting (Chia and Wu, 2015; Jose et al., 2016). Bioprinting has been used in the

past few years to facilitate research in developmental biology, stem cells and materials

sciences (Donderwinkel et al., 2017; Bajaj et al., 2014; Murphy and Atala, 2014). It

has been successfully used for printing biomaterial composites ladened with cells

to create a layer-by-layer assembly of CAD models extracted from MRI or CT, or

designed from scratch. With the aim of replicating native biological environments in vitro,

miniature tissue models, organs-on-a-chip, 2D and 3D structures have been produced

via pneumatic or mechanical extrusion of bio-inks using both natural and synthetic

hydrogel polymers, such as ECM proteins, gelatin, silk, elastin, hyaluronic acid (HA) and

polyethylene glycol (PEG) (Donderwinkel et al., 2017; Park et al., 2015; Gudapati et al.,

2016; Kim et al., 2016). However, this technique holds certain limitations. Similar to DIW,

the properties and specific print parameters vary from material to material, and must be

properly evaluated prior to printing. Properties such as viscosity, porosity, track-width,

nozzle diameter, nozzle height, shear thinning and the curing method must be taken
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into account and adjusted for accordingly in order to not initiate cell death or apoptosis

during the AM process. Another disadvantage associated with the optimization process

is the amount of time consumed whilst optimizing the print parameters for each material.

However, once this process is optimized, a researcher can begin to fabricate complex

structures, and is limited only by components of the 3D printer itself.

Another limitation associated with structures produced using bioprinting is that final

products, typically hydrogels, exist in their gel state which exhibit unsuitable mechanical

properties for in vivo applications (Fedorovich et al., 2008). The poor mechanical stability

of these 3D structures is regarded as a critical drawback of current bioprinting technology.

Despite the variety of bio-inks investigated, scaffold-free scale-ups of organs has been

difficult to achieve primarily due to the copious variations of tissue-specific properties

and a lack of complete understanding of the complex interactions between cells and

ECM structural properties, which dictate cell behaviour, tissue elasticity and flexibility, as

well as disease pathophysiology (Pati, Song, Rijal, Jang, Kim and Cho, 2015; Tzu and

Marinkovich, 2008; Chen and Liu, 2016; Jenniskens et al., 2005; Perris, 1997). Another

apparent limitation of this technique is the enforcement of a sterile environment due

to the incorporation of cells, which needs to be maintained constantly throughout the

fabrication process, as well as post-print cross-linking or gelation processes typical for

hydrogels may lead to local or general cell death; further limiting the library of materials

viable for adaptation with this AM technique Donderwinkel et al. (2017); Guillemot et al.

(2010); Jose et al. (2016); Murphy and Atala (2014).

Therefore, for the primary objective of this thesis, a conventional FDM printer previ-

ously modified for DIW printing was utilized. Cells were not incorporated into the printing

ink for reasons aforementioned. DIW techniques are of interest because they allow re-

searchers to exercise control over the internal morphology and geometry of their printed

constructs, which can be based on the microstructure of tissues they aspire to replicate

or mimic. Further aspects of the AM technique employed in this thesis are discussed



www.manaraa.com

CHAPTER 2. BACKGROUND 17

in Chapter 3, Materials and Methods for the Direct-Ink Write Additive Manufacturing of

Col-PPy constructs including: configuration, software, model preparation, and relevant

process matters.

2.2 Scaffolds in tissue engineering

Tissue engineering and regenerative medicine bodies of work have had an underlying,

unifying theme which has been to understand how cells of interest work in vivo and

how knowledge ascertained from in vitro investigations can be used to improve tissue

function, decrease immune reaction to allogenic or xenogeneic transplants by developing

therapeutic strategies, and to address the scarcity of tissue and organ donors. Regen-

erative medicine efforts have worked to understand or develop therapeutic strategies

in cases where natural processes of regeneration falter, whereas tissue engineering

approaches have typically aimed to augment damaged or diseased tissue by either

replacing, repairing, and regenerating it. Early on, it became established that cells do

not respond or behave in the same manner in a 2D cell culture setting as they would in

a 3D environment, for the native cell environment is a complex combination of chemical,

biochemical and 3D mechanical cues (Duval et al., 2017; Edmondson et al., 2014).

Tissue engineers, thus, have aimed to produce 3D scaffolds, which served as temporary

substrates that cells would adhere to, degrade and remodel by depositing their own

extracellular proteins. This lead to the advent of tissue-specific engineering approaches,

where researchers worked to produce scaffolds that closely mimicked the native cellular

micro-environment in hopes of providing an instructive micro-environment for the cells

or biologically relevant outcomes at hand.

Although a complete replication of complexities of the native ECM remains a distant

promise, much progress has been made towards this end. Researchers have been

able to produce an array of cell-delivery platforms from various natural and synthetic
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materials, and shown to observe similar physical properties to that of target tissues

and degrade at a rate that matches neo-tissue development. At present, research

efforts being done in tissue engineering are towards improving scaffold-guided tissue

regeneration in vivo, and improving cell-guided tissue regeneration. Scaffold-guided

tissue regeneration relies on invasion of neighbouring cells at the state of implantation.

This is a well-established, clinically used technique where scaffolds are treated with

growth factors and biochemical cues that promote migration into the scaffold post-

implantation, usually implanted at a wound site or where repair is the desired outcome.

The second approach involves harvesting cells from the patient, loading their cells onto

a scaffold prior to implantation, allowing the cells to mature in vitro. Afterwards, the

cell-laden scaffolds can be implanted into the host to promote in vivo regeneration,

repair or remodelling at the implant site and integration with surrounding ECM. These

paradigms have been dogmatic and motivated researchers to continually add to the

library of scaffolds, hydrogels, blends and composites available for achieving biologically

relevant outcomes such as cell proliferation or tissue maturation, typically in a static

manner; that is, as a static cell-delivery or material-induced cell response platform. Few

have ventured to go further.

Incorporation of AM technology with established tissue engineering techniques has

allowed researchers and clinicians the ability to personalize their constructs with de-

signed intricacies. Although, scale-ups and uniformity from print-to-print have not yet

been achieved to an absolute degree, much progress has been made in the context

of applying AM techniques to the fabrication of constructs and scaffolds from a range

of conventional biomaterials. These incorporations have led to expansion in the range

of complex structures researchers could produce, as well as greater control over their

construct’s properties, specifically: composition, biomolecule entrapment, size, porosity,

morphology, geometry and structural orientation (Pishko and Amirpour, 1998). Tissue

engineers, having introduced AM technology into their fabrication protocols, have pro-
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duced 3D scaffolds that better reflect the physiological environment; advances from

these investigations have further informed researchers of standards and requirements

necessary to qualify a successful scaffold before moving onto the final stage of testing,

that is, host implantation. Of these requirements, the most important one to show is

cyto-compatibility and/or biocompatibility.

Traditionally, these scaffolds have been primarily static systems designed for simple

degradation and integration by the host; however, human physiology is more complex,

heterogenous and dynamic. Recent years have seen a trend towards the development

of scaffolds and substrates that are capable of instructing cells or modulating the vicinity

of implant site towards biologically relevant outcomes such as regeneration, specifically

without scar formation, fibrosis, or immune rejection, via incorporation of drugs/bioactive

molecules or functionalization of the construct itself via incorporation of electro-active,

conductive or shape memory polymers (Burdick and Murphy, 2012; Bakarich et al.,

2015; Nadgorny et al., 2016; Zhang and Khademhosseini, 2017).

2.3 The ECM

The native cellular micro-environment, i.e. the ECM, is essential for healthy tissues as it

surrounds all cells. It consists of tissue specific niches that differ in their biochemical

and mechanical attributes (Lane et al., 2014). The ECM is a complex, interconnected

meshwork of proteins, glycoproteins and polysaccharides (Lane et al., 2014; Choi

et al., 2014). There are two classifications of ECM, namely: the basal lamina and

connective tissue ECM. The basal lamina, or the basement membrane, is a thin sheet

substrate that contributes to tissue structure and stability (Yurchenco and Patton, 2009;

Sannes and Wang, 2009). It serves as the interface between epithelia, neural cells, or

muscles cells, and their surrounding tissue and connective tissue ECMs, in addition

to serving as physical support and providing boundary constraints (McMillan et al.,
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2003). Connective tissue ECM is enriched in insoluble proteins and it forms the basic 3D

structure of tissues. Connective tissue ECM plays a major role in regulating cell function

as it directs interactions between neighbouring cells and secreted factors, inflammation

factors, chemical cues such as hypoxia and glucose, as well as mechanosensory cues

that stimulate resident cells (Streuli, 1999; Ngan F Huang and Li, 2017; Hubmacher

and Apte, 2013). Each ECM is tissue-specific due to the ECM’s intricate protein-

polysaccharide network compositions; differing in macromolecule concentration, physical

and biomechanical factors such as hydrophilicity, elasticity, stiffness, shear forces,

porosity, 3D architecture and topography that hold influence over cellular structure and

cell behaviour (Moore and Lemischka, 2006; Scadden, 2006; Yin and Li, 2006; Singh

et al., 2015; Crapo et al., 2011).

Secreted by the cells, the main macromolecules within the matrix that contribute

to the complex tissue specific 3D architecture consist of the following: fibrous proteins

that include collagen and elastin, glycosaminoglycans (GAGs), proteoglycans, and

glycoproteins. Collagen is the most abundant protein in mammals, as well as in any

ECM. In the human body, it serves as the main structural protein found in bone, cartilage,

tendons and ligaments (Gelse, 2003). The collagen family of proteins includes 28

subtypes. Collagens include fibrillar, network forming, anchoring fibril proteins that have

been extensively studied and shown to provide structural integrity and stability to the

ECM (Aziz et al., 2016; Ekblom, 1995). Further aspects of collagen are discussed

in section 2.4.2 of this chapter, including: properties, past investigations as a tissue

engineering scaffold, integrations with PPy, and scaffold synthesis techniques.

The diversity seen across tissues in their ECM is characterized by the varying

concentrations of these aforementioned macromolecules, the manner in which the

macromolecules are organized, in addition to any specialized macromolecules present

specific to that tissue and/or ECM (Rosso et al., 2004; Hynes and Naba, 2012). This

diversity makes it challenging to adopt one, ideal hydrogel or scaffold due to the distinct
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characteristics and features of tissue-specific ECMs. During development, cells secrete

the macromolecules that form the ECM. These macromolecules are organized into

tissue-specific structures dependent on the function, needs and stresses experienced

by said tissue. Afterwards, cells begin to respond to the deposited ECM, as it begins to

influence and modulate cellular behaviours such as attachment, gene expression, sur-

vivals, proliferation, migration, anoikis, orientation, differentiation, as well as apoptosis

via ECM-cell interactions involving bioactive molecules, electrical and biomechanical

signals (Lu et al., 2012). This feedback and reciprocal relationship of ECM-cell inter-

actions is one that researchers must account for when designing tissue engineering

approaches and therapeutic strategies.

2.3.1 Bioactivity

The ECM is "bioactive" in the sense that there is no free diffusion between the cells (other

than through gap junctions), so most extracellular factors interact with the ECM prior

to interacting with the cells. The availability, mobility and distribution of these factors

can therefore be regulated by the micro-environment via mediation of biochemical,

mechanical and electrical signals in vitro to study cellular response and behaviour as

a result of variable stimulation. The ECM controls signalling by influencing receptor-

ligand binding and by holding signal molecules in reserve until specific events trigger

their release to cells in the near vicinity (Ngan F Huang and Li, 2017; Hubmacher and

Apte, 2013). These specific events include wound healing and bacterial infection. One

instance of this phenomena is in the case of chondrogenic cells in articulating cartilages,

where diffusivity of nutrients and oxygen is controlled by the stiffness and porosity of the

ECM which influences chondrocyte turnover.

Although the cellular responses to chemical and biochemical cues such as toxins,

growth factors, hormones, steroids and ischemia have been scrupulously investigated by

researchers, other critical aspects of the cellular micro-environment have been difficult
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to employ simultaneously in a controlled manner. Specifically, biophysical components

such as mechanotransduction, bioactivity and electrical conductivity that operate in

concert in the cellular 3D micro-environment have been a challenge for researchers to

replicate in vitro. Therefore, there is a need to improve our understanding of the ECM

niche by investigating how select cells behave when subjected to a range of combined

electrical, biochemical and mechanical stimulation, in a 3D cell culture environment. A

designable, electrically conductive, electro-active, mechanically active scaffold tailorable

to the outcomes of clinical relevance would address this need, and vastly transform the

current state of tissue engineering and regenerative medicine. Such a platform would

allow researchers the ability to investigate the extent to which mechanotransduction,

bioactivity and electro-conductivity effects — in a combinatory or isolated manner —

play a role in tissue repair and regeneration, in stem cell differentiation, as well as in

pathogenic events such as fibrosis, cancer and tumour development (Kim et al., 2018;

Kessenbrock et al., 2010; Desmouliere et al., 2014; Maller et al., 2010; Guarino et al.,

2007). Furthermore, a biomimetic scaffold that allows timed release of soluble factors

such as growth factors or drugs would enhance therapeutic efficiency of regenerative

medicine applications, improve drug testing efforts, and provide edification on tissue

engineering strategies (Tandon et al., 2018). The project presented in this thesis works

to investigate one potential avenue towards addressing that need.

2.3.2 Mechanotransduction effects

The prevalent motivation behind current tissue engineering research studies is to learn to

modulate the processes that lead to disease progression, wound healing, and scarring,

with focus towards developing therapeutic strategies and scaffolds for tissue engineering

purposes that directly instruct cell behaviour towards promoting tissue regeneration

(Humphrey et al., 2014; Bonnans et al., 2014). With the aim of developing tissue

regeneration strategies, researchers have worked to relate biological relevance to the
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Figure 2.3: Illustration of ECM homeostasis and cellular response to mechanotrans-
duction effects shows a fibrotic cellular response is resultant from tissue stiffening
(Humphrey et al., 2014, included with permission).

ECM’s transference of external cues to elicit specific cell behaviour and response (Atala

et al., 2012; Butler et al., 2009). The activation of these behaviours works to inform the

development of therapeutic strategies for meeting clinical needs in the future. Substrates

and scaffolds that held a mismatch of ECM physical factors, such as stiffness/elasticity,

porosity or stresses (tensile and/or shear), to those of target cells/tissue observed

activation of non-relevant behavioural patterns such as apoptosis, loss of cell phenotype

or transformation (Akhmanova et al., 2015; Marastoni et al., 2008). The ECM is dynamic

in the sense that the ECM undergoes constant remodelling as needs of the tissue

change. In normal physiology, mechanosensory cues from the ECM direct cells to

secrete ECM remodelling factors which are kept in a balanced, homeostatic standing.

For instance, in the biomechanics of lung parenchyma, bone cell differentiation, cartilage

hydrophilicity, muscle growth and adaptation, as well as in fibrosis pathogenesis of the

heart, lung, skin, and blood vessel tissue (Suki et al., 2005; Mullender et al., 2004;

Tidball, 2005; Hinz, 2009). However, in a disease model, these same mechanosensory

cues can lead to tissue degradation due to a mismatch in production of anabolic and
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catabolic factors (Humphrey et al., 2014; Bonnans et al., 2014; Schuppan et al., 2001).

Another clear instance to the extent to which mechanotransduction effects influence

cellular behaviour is demonstrated by Wolff’s law, at the organ level: bone cells respond

to mechanical forces by remodelling bone structure, that is, by resorption or formation

of bone, according to the stresses and strains experienced by the tissue (Frost, 1994).

More so, at the cellular level, mechanotransduction causes changes in the cytoskeleton

that stimulate alignment or polarity, growth factor secretion and/or proliferation (Hamill

and Martinac, 2001; Jansen et al., 2017). For instance, tissue stiffening is a predominant

feature of fibrosis and it obstructs organs whose mechanical properties are important for

their function (Humphrey et al., 2014). Additionally, enzymatic degradation of the ECM

and protein unfolding as a function of mechanotransduction has also been implicated in

tumour formation and cancer development (Westermarck and Kähäri, 1999; Kessenbrock

et al., 2010). Although methods for measuring physical characteristics of extracellular

matrices and tissues have been developed, researchers remain challenged in replicating

mechanotransduction effects and observing consequent cellular behaviour in 3D cell

culture settings for extended time periods.

It is important to note that the forces acting on tissues are not always directly per-

ceived by the cells, but rather stimuli is transmitted through the ECM unto the cells

since tissues undergo constant turnover and since tissue/ECM remodelling can some-

times lead to changes in the stiffness of the ECM. As Figure 2.3 shows cells must

be able to assess the physical properties of their surrounding ECM and consequently,

maintain or remodel the ECM accordingly lest dysregulation in homeostasis leads to

fibrotic pathogenesis and disease onset (Wells, 2008). The significance of elucidat-

ing mechanotransduction effects is also observed in the context of stem cells, where

construct stiffness has also been demonstrated to play an important role in their differ-

entiation (Maller et al., 2010; Kim et al., 2018; Lo et al., 2000; Skardal et al., 2012). In

a study by Engler et al. (2006), the relationship between substrate elasticity and bone
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marrow-derived mesenchymal stem cells (MSC) committing to lineages and exhibit-

ing corresponding phenotypes was investigated. Researchers found that MSCs, with

extreme sensitivity, probe their micro-environments for elasticity and undergo elasticity-

directed lineage specification. A platform that could emulate or impart mechanical

stimulation to cultured cells holds grave implications for investigations in regenerative

medicine and tissue engineering.

Currently, in vitro models that postulate to learn of the mechanobiology of cell

types typically isolate and plate cells onto thin gel layer materials (e.g. acrylamide or

silicone), which can vary in stiffness upon changing concentrations or layer thickness,

however, nonetheless show typical linear mechanical response. In contrast, native ECM

is capable of withstanding a range of strains and demonstrates viscoelasticity/non-linear

mechanical response (Mammoto and Ingber, 2010; Fung, 1983; Storm et al., 2005).

Additionally, different methods and devices used for evaluating Young’s modulus or

complex modulus give different results for the same tissue (Humphrey et al., 2014;

Akhmanova et al., 2015). This demonstrates a disparity between current means for

studying mechanotransduction effects in vitro, and a need for an upgrade. Table 2.1

showcases key aspects of techniques employed to study mechanotransduction effects in

vitro, and the limited edification they provide. The project presented in this thesis works

to investigate a potential route for directing elasticity of the cellular micro-environment

and studying consequent cellular response.

2.3.3 Electrical Stimulation

In addition to experiencing mechanical stresses and strains, cells experience electric

cues that play a vital role in the development and regeneration of tissue by regulating

proliferation, maturation, polarity, and differentiation (Shi et al., 2014, 2016; Uz et al.,

2018). In mature tissue, these electrical cues are perceived via direct connectivity to

ion channels at the cell membrane. Since no free electrons are available to serve as
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Table 2.1: Table of experimental methods used to study physical properties of substrates,
tissues and cells in vitro (Akhmanova et al., 2015).

Method
Properties
measured

Scale Description

Atomic Force
Microscopy (AFM)

Young’s modulus nm
A nanoindenter measures
the force-indentation
displacement profile

Dynamic Mechanical
Analysis (DMA)

Viscoelasticity,
Young’s modulus,
storage and loss
modulus

Macroscopic
A sinusoidal stress is
applied and the strain in
the material is profiled

Rheology

Shear storage
modulus, loss
modulus, and
viscosity

Macroscopic

Viscoelasticity of
materials is determined
by imparting shear stress
and measuring material
response

Magnetic Resonance
Elastography

Shear stiffness µm

Shear waves are
propogated on the
surface of samples to
assess shear stiffness
response

SEM/Confocal Imaging
Porosity and
pore size

nm
Samples are directly
imaged and assessed
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charge carriers in physiological solutions, differential concentrations of charged ions

such as Na+ , K+ and Cl− establish an electrochemical gradient on the two sides of the

membrane, creating a measurable membrane potential and current flow. As cells couple

together, a resistive barrier forms at the tissue level leading to measurable, endogenous

electric fields existing across epithelial tissue like skin and cornea (McCaig et al., 2005).

More than a century ago, pioneering works in electrophysiology by Galvani, Mat-

teucci and Du-Bois Reymond demonstrated that injury caused a disruption in the electric

fields across these epithelial layers (Roth, 1994). With advancements in technology,

researchers learnt that wound-induced electric fields controlled cell orientation and

proliferation near the edge of the wound (Song et al., 2002). This phenomena motivated

tissue engineers to investigate the extent to which electrical conductivity plays a role

in mediating cellular behaviours as a function of temporal ionic current changes in the

cellular micro-environment; leading to the development of electro-conductive biomate-

rials, substrates and scaffolds capable of stimulating cells in vitro. These substrates

have been typically produced via inclusion of conductive materials, such as CPs, carbon

nanotubes (CNT), carbon nanofibers (CNF), graphene, graphite oxide (GO), reduced

(rGO), etc. as stand-alone constructs or as composites blended with natural and/or

synthetic polymers (Thompson et al., 2015; Stejskal, 2017; Ganji et al., 2016; Rowlands

et al., 2007; Huang et al., 2017; Mihic et al., 2015).

Despite the diversity of materials available for creating electro-conductive composites,

methods for producing these scaffolds has been limited to 2D films, electro-spun fibres

or mould casting and hydrogel fabrication techniques. Electro-spinning methods produce

high quality and robust fibres for various biomaterials which can be controlled for porosity,

orientations, diameter and scale. Although tuning the process and ambient factors (such

as shape of collector, spin speed, applied voltage, humidity and temperature) have

allowed researchers to produce a range of fibrous and patterned scaffolds, the technique

is limited to the production of thin fibres, making it difficult to produce complex structures
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where effective control over the internal morphology and assembly of complex structures

can be achieved (Wang et al., 2013; Prabhakaran et al., 2011). For the same reason of

lacking of effective control over the internal morphology and inability to produce complex

structures, 2D films and mould casts are greatly limited in the range of their application.

The electro-conductive scaffold serves to regulate cell-cell and cell-ECM interac-

tions by mimicking the native micro-environment and electrical signal propagation, in

addition to providing sufficient biochemical and biomechanical factors necessary for

keeping cells happy. Of the aforementioned materials used to create electro-conductive

scaffolds, electro-conductive hydrogels have emerged as a promising candidate for

tissue engineering applications. The typical limitations associated with hydrogels such

as unsuitable mechanical properties, potential immunogenicity or uncontrolled degra-

dation can be addressed by incorporation of biodegradable constituents and adopting

fabrication methods which eliminate or overcome said limitations. Conductive additives

such as carbon-based nanomaterials (e.g. CNFs, CNTs, graphene, and rGO) produce

highly conductive scaffolds even if present at low concentrations (0.003–0.01 S · cm−1);

however, potential toxicity associated with these carbon-based nanomaterials and chal-

lenges in creating uniform dispersion in hydrogels has hindered clinical applications

(Firme III and Bandaru, 2010; Kunzmann et al., 2011; Gurunathan and Kim, 2016).

Another set of conductive biomaterials that have been successfully incorporated with

hydrogels concern CPs. Further aspects are discussed in section 2.5. The project

presented in this thesis works to investigate the retention of electro-conductivity of PPy

as a means for route for electrically stimulating cells and studying consequent cellular

response.
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2.4 Review of Scaffolding Biomaterials for Tissue Engi-

neering

2.4.1 dECM

Currently, research efforts in tissue engineering and regenerative medicine are directed

towards designing and investigating biomimetic scaffolds in order to find biomaterials

that closely resemble tissue-specific ECMs, producing well-defined 3D constructs viable

for intended regenerative capacity and improving physiological relevance of engineered

human tissues (Tzu and Marinkovich, 2008; Chen and Liu, 2016; Jenniskens et al.,

2005; Ventre and Netti, 2016). Naturally-derived materials, especially those containing

ECM components, have shown great promise and hold an upper hand to alternative

biomaterials, which have shown difficulty in demonstrating long-term retention after

host implantation and sufficient biodegradability (Asti and Gioglio, 2014). Of these

naturally-derived materials, collagen or decellularized ECM (dECM) and other ECM

components have been explored.

At present, researchers have been able to DIW print as well as bioprint dECMs of

adipose, skin, cartilage, liver and bone origin. Although dECMs of autologous or xeno-

geneic source, once deprived of their antigenic components, have been successfully

used as biological scaffolding materials and cell delivery systems even with traditional

fabrication methods, it is not without its limitations. Decellularization protocols typically

involve exposure to detergents, harsh enzymes and physical forces that cause disruption

of the ECM components (Crapo et al., 2011). This can lead to loss of GAG protein

content in the dECM, which necessitates changes in the physical properties of the

scaffold which may lead to complications in the long-term, such as implant rejection.

Substrates or scaffolds that held a mismatch in physical factors and mechanical proper-

ties have been observed to result in activation of non-relevant behavioural patterns such
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Figure 2.4: A chart illustrating the distribution of natural (red) and synthetic (blue)
polymers use as DIW ink (Carrow et al., 2015, included with permission).

as apoptosis, loss of phenotype or phenotype transformation (Akhmanova et al., 2015).

Even though detergent-free protocols have been developed, which diminish the

cytotoxicity effect seen from detergent residuals, the efficacy of these dECM in terms

of in vivo response to implantation is still not quantitively standardized. Due to the

advantage of already present complex cues and 3D architecture inherent to native

ECM, the acellular and biodegradable nature of these ECM-rich scaffolds makes them

promising platforms for promoting tissue regeneration at the implantation site as viable

cell delivery systems. However, dECM scaffold biomechanical properties and micro-

geometry effects on cell function have not been well-studied to date. Researchers

studying decellularization protocols involving a trypsinization step observed a drastic

loss in mechanical stiffness of the dECMs due to collapse of collagen architecture and

decrease in porosity in post-trypsinized dECM (Singh et al., 2015). Although this field of

study is still in its infancy, most dECM scaffolds do not possess the desired mechanical

properties, which makes it difficult to attribute any consequent cell behaviour and

modulation as a function of dECM content or concentration as viable means for studying

cellular response by modulating their micro-environment properties (Donderwinkel et al.,

2017; Singh et al., 2015; Jang et al., 2016).
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2.4.2 Collagen as Scaffolding Biomaterial for Tissue Engineering

Alternatively, instead of using dECM as the scaffolding source, researchers have instead

opted to use a more accessible and naturally-derived polymers as the scaffolding

base component for biomedical applications involving cell-culture platforms and tissue-

engineering scaffolds. Furthermore, after the marriage of AM technology and tissue

engineering techniques, 3D printed scaffolds consisting of biologically derived materials

(Figure 2.4) such as collagen, elastin, silk, dECM, HA, chitosan, alginate, gelatin, etc.

have been the focus of extended research as they have been shown to establish a

micro-environment that can be attuned to represent target ECM, to promote extended

cell viability, and for feasibility as a vehicles of realizing tissue engineering prospects

(Donderwinkel et al., 2017; Wang et al., 2017; Rhee et al., 2016; Bajaj et al., 2014; Patra

and Young, 2016; Dong and Lv, 2016). A large amount of work has been dedicated for

investigating these biomaterials and their derivatives for drug delivery, wound healing,

tissue engineering and regenerative goals. For the purposes of the work presented

in this thesis, review is limited to investigations of collagen and collagen-composite

constructs.

Collagens are a major family of ECM proteins that characteristically form a triple

helix structure of three polypeptide chain repeats. 28 different collagen proteins have

been identified to date; each hallmarked by long, repetitive protein sequences of glycine-

X-Y, stabilized by hydrogen bonding. These proteins all impart structure, strength and

resilience to tissues, adding to the complexity and diversity of ECMs. Fibrillar, meaning

fibril forming, collagen types I, II, III, V and XI are predominant in many human tissues

and of interest to researchers because of their association with extracellular matrix

scaffolding and high structural stability due to covalent cross-links between fibrils and

self-aggregation (Dong and Lv, 2016; Gelse, 2003; Mouw et al., 2014).

Collagen is a ubiquitous protein in mammals. It constitutes the majority of soft and

hard tissues. It can be extracted from bone, cartilage, tendon, ligament, blood vessels,
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and skin. Collagen’s obtainability and excellent biological characteristics motivated

researchers to look at medical applications of collagen as a biomaterial, including:

nerve and ligament repair implants, bone regeneration, skin regeneration, tendon

regeneration, cornea regeneration, wound healing, drug delivery and as gene therapy

vehicles (Sarker et al., 2015; Rieu et al., 2017; Chattopadhyay and Raines, 2014; Cen

et al., 2008). Standalone collagen scaffolds have been developed by freeze-drying

and electro-spinning methods, captillazing on the self-aggregating properties of fibrillar

collagen. Investigations by Barnes and Bowlin (2007) showed that electro-spun collagen

fibres produced patterning similar to native collagen ECM and supported adequate cell

proliferation. Offeddu et al. (2015) showed that mechanical properties of freeze-dried

collagen scaffolds was dependent on the initial collagen slurry concentration, and this

relationship could be benefited from matching target tissue mechanical properties with

implanted scaffolds. Despite the attractive biomaterial properties of collagen such as

low immunogenicity, a porous structure, and biocompatibility, it lacks the mechanical and

structural integrity to be used as a standalone scaffold in aqueous conditions (Chevallay

and Herbage, 2000; Gelse, 2003). However, chemical treatments such as genipin,

transglutaminase, and physical treatments such as critical point drying, freeze-drying

and UV irradiation have shown great success in cross-linking collagens and increasing

scaffold mechanical strength (Offeddu et al., 2015; Yeong et al., 2007).

One reason collagen has emerged as a widely studied biomaterial in tissue engi-

neering research, in addition to its ubiquity and favourable properties, is the ability to

culture almost any cell type on collagen based scaffolds. Collagen-based scaffolds

have been evaluated for their suitability as platforms capable of achieving nerve tissue,

tendon/ligament, skin, bone and cartilage tissue regeneration and repair (Koopmans

et al., 2009; Meimandi-Parizi et al., 2013; Friess, 1998; Chevallay and Herbage, 2000).

Another common investigation has been vascular grafting (Lee et al., 2008). Tendons

and ligament predominantly (70–80%) comprise of collagen (Rieu et al., 2017). Similarly,
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skin also predominantly consists of collagen (Chattopadhyay and Raines, 2014; Aziz

et al., 2016). Collagen-based scaffolds have shown great success where autologous

skin grafts and allogenous skin grafts have been associated with poor long-term retention

and donor-site morbidity (Hanasono et al., 2010).

Although pure scaffolds have been used in skin regeneration and repair tissue

engineering applications, they are limited as the mechanical properties of the scaffold do

not completely reflect the in vivo complexity of ECM mechanics of organs other than skin

or tendon. Therefore, researchers have opted to using collagenous scaffolds in concert

with other biomaterials which allows certain advantages and room for manipulation for

biomedical applications of interest. For instance, collagen has been combined with

hyaluronic acid (HA) to create scaffolds that showed enhanced differentiation of rat bone

marrow-derived MSCs towards chondrogenesis, in vitro, under ischemic conditions

(Bornes et al., 2015). Collagen has also been combined with silk-fibroin, a protein

obtained from silk glands of spiders, silkworms, scorpions, mites or flies, to increase

mechanical integrity of the collagen-based scaffold whilst simultaneously improving

cell adhesion and proliferation of human corneal epithelial cells (Long et al., 2015;

Rockwood et al., 2011). Collagen has also been investigated as a blend with chitosan,

a well-known derivative of insect exoskeleton aminopolysaccharide chitin that holds

advantageous properties such as biocompatibility, biodegradability, and non-toxicity

(Elieh-Ali-Komi and Hamblin, 2016; Ahmed and Ikram, 2016). Sun et al. (2015) reported

better porosity, water absorption rate, higher elasticity modulus, higher metabolism

and proliferation of rat bone marrow-derived MSCs in silk-fibroin-collagen scaffolds

compared to silk-fibroin-chitosan scaffolds. Another route undertaken by researchers is

to combine collagen with synthetic materials to create hybrid blends and improve their

performance. In this approach, the synthetic polymer becomes the supporting material,

i.e. it provides the bulk of mechanical support for the structure, while collagen serves as

a surface-active protein to provide cells better adhesion via topography and recognition
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signals (Gordon and Hahn, 2010). Investigations of collagen with synthetic polymers,

such as poly-(ε-caprolactone) (PCL), PLA, PVA, PEG, PGA, and PLGA, have shown

great potential for applications in vascular tissue engineering, nerve repair, and bone and

liver regeneration (Dong and Lv, 2016). Collagen and inorganic blends have also been

investigated to create composite scaffolds to suit various clinical requirements. Their

performance has been evaluated in terms of control of morphology, elasticity, stiffness,

and degradation. Major attention has been given to ceramic/inorganic polymers like

hydroxyapatite and β-tricalcium phosphate (β-TCP). Essentially, these investigations

show the benefits associated with collagenous constructs and collagen-blends are vast

in terms of tissue regeneration and repair strategies, even as an additive.

Utility of collagen has been demonstrated in multiple arenas of tissue engineering,

as previously mentioned, however, the most important reason for its inclusion in this

thesis project is due to the fact that it has been previously 3D printed using DIW

systems (Kontturi et al., 2014; Haaparanta et al., 2014; Jia et al., 2013; Lee et al.,

2008). Collagen has been 3D printed as a standalone ink, as a bio-ink using bioprinting

systems, as well as printed in concert with bioactive components as a composite,

including: collagen-calcium phosphate, collagen-HA and collagen-alginate (Park et al.,

2014; Inzana et al., 2014; Rhee et al., 2016; Yang et al., 2018; Nocera et al., 2018).

The rheological properties of collagen were evaluated and found to be indicative of

shear thinning behaviour that is particular to inks for DIW printing or bioprinting viability.

These investigations collectively suggest that incorporation of bioactive components into

collagen-based scaffolds retains its biologically relevant properties and holds potential

for personalized and designed therapeutic strategies for tissue regeneration, such

as bone or nerve repair. Although the synergy between a multitude of scaffolding

components and AM technology has allowed researchers with an expansive ability to

produce multitude of substrates similar to patterning of the ECM as delivery systems

capable of modulating cellular behaviour, most of these exists as static substrates.
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There exists a need for further investigations that facilitate scale-ups of existing tissue

engineering approaches to the organ scale. For the sake of achieving tissue engineering

and clinically relevant outcomes, investigations that will allow us to profile cell behaviour

under stimulated conditions will improve our understanding of how changes in the

native cellular micro-environment influence cell phenotype, behaviours and consequent

function.

2.5 Review of Conjugated polymers

Conjugated polymer (CP) materials are a branch of electro-active polymer (EAP) ma-

terials. EAPs are materials that exhibit physical responses such as change in volume,

colour or shape in response to external stimuli such as electrical current or applied

potential. CPs are characterized by alternating single and double bonds along the

polymer backbone, a process known as conjugation, which allows charge delocalization

and enables CPs their electro-conductive properties (Smela, 2003; Spinks et al., 2009).

Another interesting property of CPs is that they undergo conformational change

when the oxidation state of the CP backbone is changed, in response to electrochemical

switching (Jager et al., 1999a; Wang, Shapiro and Smela, 2004; Wang et al., 2008).

As potential is applied, bond re-orientation causes the formation of charges along the

backbone which are balanced by ionic ingress or egress, resulting in volume change

(Spinks et al., 2009; Otero and Martinez, 2016; Otero, 2018). This qualifies the CP

construct as an actuator capable of performing mechanical work, or a biosensor, or a

drug delivery release system. CP-based constructs are superior to inert scaffolds or

substrates in the sense that traditional constructs serve only as cell delivery or molecule

entrapment platforms, whereas CP-based constructs offer a multifaceted stimulation

afforded by the unique properties of CPs, namely the dopant-dependent topographical,

electro-active, chemical and electrical properties (Seil and Webster, 2010). Due to
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these advantageous properties, CPs have been used in the past for applications in soft

robotics, artificial muscles, lab-on-a-chip, hydrogels, biosensors and neural interface

electrodes (Ates, 2013; Guiseppi-Elie, 2010; Trivedi et al., 2008; Svennersten et al.,

2011; Berti et al., 2017).

CP-based structures are of specific interest to tissue engineers because of their

ability to mimic critical aspects of the native cellular micro-environment such as elec-

trical conductivity, bioactivity and/or mechanical actuation. Integrations of CPs with

naturally-derived and synthetically-derived materials allows functionalization of sub-

strates that would have otherwise remained static in nature. These integrations for

tissue engineering purposes has been a field of study since the late 1980s, providing

researchers the ability to observe cellular behaviour of different cell types on fabricated

substrates, post-electrical stimulation (Ramanavicius et al., 1999; Kontturi et al., 1998;

Miller and Zhou, 1987). CPs such as polyaniline (PAni), polypyrrole (PPy), poly(3,4-

ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and poly(2,2-bithiophene)

(PBP) have been utilized to generate a multitude of 2D and 3D structures, including:

films, powders, membranes, aerogel and hydrogel scaffolds, nanofibers, as well as

linear, tubular, and bending actuators (Huang et al., 1986; Mattioli-Belmonte et al., 2003;

Wang, Shapiro and Smela, 2004; George et al., 2005; Bhadra et al., 2009; Asplund

et al., 2009; Farajollahi et al., 2016; Khaldi et al., 2016; Yan et al., 2017).

Despite the variety in the amount of structures formed, the polymerization processes

associated with creating CP-based constructs has made it challenging for researchers

to incorporate AM technology. Another limitation of unmodified CPs, in vivo and in vitro,

is their lack of biodegradability. To address these limitations, researchers have combined

CPs with a range of biologically-derived materials, that are inherently biodegradable, as

well as with biologically active molecules which act as surface proteins or cell adhesion

molecules to promote degradation in vivo and in vitro (Ismail et al., 2011; Leonavicius

et al., 2011; Shi et al., 2014; Mihic et al., 2015; Shin et al., 2017).
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2.5.1 Polypyrrole as the CP of choice

Of the aforementioned CPs, PPy and PPy composites have been by far the most exten-

sively studied. This is primarily due to its high electrical conductivity, biocompatibility,

commercial availability and ability to operate in physiological conditions (Jager, 2013;

Stejskal, 2017; Ouyang, 2018; Tandon et al., 2018). Additionally, topographical modifi-

cation and actuation modulation can be achieved by inclusion of dopant molecules or

bioactive molecules during the polymerization step which can influence its ion exchange

or electro-active capacity, as well as influence promotion of cell adhesion and prolifera-

tion of different cell types; ranging from endothelial cells and nerve cells to osteoblasts

(Jayamurgan et al., 2013; Molino et al., 2013; Sharma et al., 2013; Bendrea et al., 2011).

Another reason for widespread use of PPy is due to its ease of synthesis. PPy has

been successfully integrated with a variety of naturally-derived or synthetically-derived

biomaterials and shown to retain favourable properties (Stejskal, 2017; Shin et al.,

2017; Ketabat et al., 2017; Tandon et al., 2018). Synthesis parameters such as oxidant,

dopant, pH, temperature, substrate and solvent can influence functional properties of

PPy constructs. The tailorable manner in which PPy-based scaffolds and constructs can

be produced makes PPy an emergent tool for novel applications in tissue engineering

(Smela and Gadegaard, 2001; Smela, 2003).

2.5.2 Synthesis and Actuation Mechanism of Polypyrrole

Construct properties such as roughness, thickness, conductivity, volume change/ac-

tuation, etc. are influenced by reaction parameters such as pH, solvent, dopant, and

temperature, and dependent on the method of PPy’s synthesis as shown by an ex-

tensive study by Fonner et al. (2008). PPy is typically synthesized via the chemical

oxidative polymerization or electrochemical polymerization method. During electro-

chemical polymerization, monomers deposit onto the surface of the working electrode,
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typically platinum or gold, by application of an anodic potential, generating films of

modular thickness (Heinze et al., 2010). The reaction proceeds favourably if the chosen

solvent is aqueous, ionically conductive and has a large enough potential window to

not undergo electrolysis at the applied oxidation potential, that is, to provide a stable

solution for the polymerization of pyrrole. As shown in Figure 2.5, the application of

the anodic potential generates a radical ion and subsequent resonance structures

which react with other monomers to create oligomers, which subsequently react with

other monomers/oligomers to create longer oligomers/polymers. At the same time,

an anion/dopant/counterion molecule contained in the solution is incorporated into the

polymer to maintain a net neutral charge for the polymer as the film forms (Genies et al.,

1983). Interestingly, this doping stage can also be introduced after the synthesis of the

electrochemically polymerized PPy film has finished (Kupila and Kankare, 1995). This

allows great room for modulation of the topographical, electrochemical, mechanical and

electrical properties of the end-product.

Additionally, the pH of the polymerizing solution significantly influences the reactivity

and conductivity of the polymer. The pH lowers as a new proton is produced from a

monomer being added to the polymer backbone. Another factor that influences the

kinetics of the polymerization process is temperature, which has been observed to

decrease redox properties and conductivity of films if polymerization occurs even at

room temperature compared to −20 ◦C (Sabouraud et al., 2000). This process has

been more popular over the years because it yields films of variable thickness and

smoothness on the anode surface, depending on the type and duration of potential

applied, but mainly because it provides better control over morphology than traditional

chemical polymerization methods (Guimard, 2008; Toshima and Ihata, 1996).

The second method, referred to as chemical oxidative polymerization, concerns the

chemical oxidation polymerization of pyrrole in the presence of a catalyst (e.g. an oxidant

such as FeCl3), and follows a similar reaction as the mechanism shown in Figure 2.5.
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Figure 2.5: The oxidative polymerization reaction that occurs in both electropolymer-
ization and chemical polymerization methods for PPy. The mechanism described in
this figure is the commonly accepted polymerization mechanism for PPy (Wallace et al.,
2009, included with permission).
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Produced constructs have been observed to be powders of nm size, be insulating films,

or take on the shape of a mould, if PPy is blended with other materials that fill said

mould, as it is polymerized (Pei and Qian, 1991, 1992; Salmón et al., 1982; Yamaura

et al., 1991). While electrochemical synthesis of PPy leads to the highest conductivity

and the best mechanical properties, other materials can be better incorporated with

PPy as blends via chemical oxidation polymerization. As synthesized, PPy exists in

its oxidized state as shown by Figure 2.6. The current passing through the polymer in

this oxidized state displays better electronic conductivity due to aligned polymer chains

(Machida et al., 1989).

The mechanism responsible for the actuation behaviour of PPy results from a

change in the oxidation state of the polymer backbone, which results in ingress and

egress of ions into the polymer backbone to balance charges, presenting as volumetric

change, and inducing surface stress that presents as modular surface elasticity (Spinks

et al., 2009). This creates room for harnessing the PPy construct as an actuator

capable of performing mechanical work and studying how cells respond to changes in

substrate elasticity. On a molecular level, the actuation behaviour is dependent on a

series of interconnected phenomena, namely: rate of charging, diffusivity of ions, ion

migration rates, ion channels formations during cyclic redox, as well as the interactions

between anionic, cationic and solvent species and with the polymer backbone (Madden

et al., 2004; Bahrami-Samani et al., 2008; Alici et al., 2008; Shoa et al., 2010; Wang

et al., 2008). Despite the complexity of factors governing electro-activity and actuation

capability, macroscopic PPy electrochemically polymerized films exhibit large, repeatable

volumetric change for extended periods of time (Jager et al., 1999b,a).

A major advantage of PPy and similar CPs is their versatility in range of functional

properties; one that is afforded by the inclusion of dopant molecules. Dopants influence

functional, biological activity, as well as physical properties of the CP. Depending on

dopant choice, the CP’s biodegradability is significantly influenced (Smela, 2003; Otero
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Figure 2.6: The oxidized and reduced states for PPy (Wallace et al., 2009, included with
permission).

and Martinez, 2016; Smela and Gadegaard, 2001). Dopants are typically anionic species

that can be introduced during or after the synthesis of the PPy to neutralize the charge

on the oxidized PPy chains (Kaneto et al., 2012). The criteria involved in selecting

dopants is dependent on the construct’s application. For biomedical applications, it

is necessary that these dopants be biocompatible and cationic species be available

in fluids for prompt exchange. Dopants can be as small as monovalent ions such as

Cl-, F-, I-, Br-, PF6, etc. or large bulky molecules like dodecylbenzenesulfonate (DBS-),

bis-trifluoromethanesulfonimide (TFSI-), etc. The resulting actuation strain for PPy

constructs doped with these small ions is typically in the range of 1–3% (Yan et al., 2017;

Madden et al., 2004; Smela and Gadegaard, 2001). For applications requiring larger

strains, these smaller dopants can be exchanged for larger molecules; however, due

to their large size, dopants such as DBS tend to be embedded into the polymer chain

during reduction and oxidation processes, making actuation the primarily the function of
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Figure 2.7: The oxidized and reduced states in response to electrochemical switching
for PPy constructs (Capri et al., 2016, included with permission).

cation exchange.

Although several theoretical models have been presented to describe the behaviours

of PPy-based constructs under different conditions exist, for instance, migration and

diffusion models by Posey (1966) and Wang, Shapiro and Smela (2004) or capacitance

models by Feldberg (1984), the dominant player has been accepted to be the ion

exchange — ingress and egress of ions — occurring between PPy and the electrolyte

solution (Otero and Martinez, 2016). Mechanical force is outputted as a consequence

of reduction and oxidation of PPy, which leads to solvent molecules being exchanged

from the CP. This variation in the concentration of ions inside the polymer and redox

electrochemistry presents as expansion/swelling or contraction/shrinking of the PPy

structure. Consumed charge determines the number of ions exchanged between the CP

and the electrolyte solution, and degree of volume change (Carpi, 2016). The reactions

majorly driving actuation for PPy-based constructs can be divided into anion-exchange

dependent or cation-exchange dependent, depending on the dopants embedded into the

polymer. For PPy constructs that have not been doped with macro-anions (A-), as large

anions can become trapped in the polymer during redox, anion-exchange is dominant.

As equation 2.1 shows, oxidation of PPy leads to positive charges existing along the

polymer chain (Otero and Martinez, 2016). Oxidized chains force anions from the solvent
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to enter the construct and compensate for the charge imbalance. This incorporation

causes swelling of the CP; whereas reduction of the polymer chain induces a neutral

charge on PPy molecules which leads to expulsion of the anions (a-) and shrinkage

of the construct, assuming the anion is small and mobile. Simply, the anion-exchange

dominant construct expands during oxidation and contracts during reduction. Sustained

electrochemical switching of the polymer backbone, that is, by application of reducing

and oxidizing potentials, presents as reversible volume variation, that is, actuation.

PPy+(a–)n+ ne– Reduction
Oxidation PPy0+ n(a–) (2.1)

PPy0(A–)n(c
+

n ) Oxidation
Reduction PPy+(A–)n + n(c+)+ ne– (2.2)

In PPy constructs where the polymer is doped with large and immobile anions, i.e.

A-, the actuation mechanism is cation-exchange dependent; assuming the cation (c+)

is small and mobile. Here reduction of the polymer chain causes the PPy molecules

to become neutral while the macro-anions that are trapped in the polymer chain force

cations to enter the polymer to compensate for the charge imbalance. This influx

of ions into the construct causes swelling of the construct; whereas oxidation of the

polymer chain causes the macro-anions to reverse back to the PPy molecules which

leads to expulsion of the cations due to opposing charges from the polymer chain.

This results in shrinkage of the construct. As equation 2.2 shows, the effect seen

in anion-exchange and cation-exchange dependent actuation mechanisms is directly

opposite, where oxidation and reduction of the PPy backbone leads to opposing results,

that is, expansion/contraction, based on the status of polymer doping. This variable

response to dopants allows researchers to investigate PPy as an electro-actuator,

variably doped and optimized for specific outputs of stress or strain to create volumetric,

linear or bending actuators (Smela, 2003; Jager, 2013; Yan et al., 2017). Additionally,
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the actuation mechanisms shown in Figure 2.7 are those which allow PPy to be applied

as controlled drug release systems, where the dopant is exchanged for molecules of

biological relevance, for instance dexamethasone, neural growth factor, etc. (Pillay et al.,

2014).

2.5.3 Biomedical applications for Polypyrrole

The bioactuator component comes into play as researchers investigate PPy-based

actuators as biomedical micro-devices capable of manipulating aspects of their en-

vironments, for instance, micro-robotic arms, or as replacements of skeletal muscle.

Mammalian skeletal muscle myofibrils have been evaluated to output large strains (20–

40%) but deliver low stresses (0.1–0.5 MPa) while PPy stress and strain outputs can

vary with dopant choice (Otero and Boyano, 2003; Madden et al., 2000). For instance,

PPy-based films doped with DBS have been reported to impart 0.6 MPa stresses but

low strain outputs of 1–12% (Kivilo et al., 2016; Kiefer et al., 2014; Bay et al., 2003).

These aforementioned electromechanically active properties along with biocompatibility,

low stimulation voltage and low production cost give PPy-based materials potential as

artificial muscles. For tissue engineers, PPy-based constructs that can be doped with

molecules which result in modular physio-chemical and mechanical properties raise

questions for potential in modulating cellular behaviours under specific conditions. For

instance, doping of PPy with biomolecules or ECM components that promote tissue

growth and maturation, or doped with anionic species such as Cl- that deter cell attach-

ment can be used as functionalized scaffolds for specific clinical applications and serve

as a tissue substitute for important in vitro investigations (Yan et al., 2017; Liu et al.,

2011; Björninen et al., 2014).

Controlled drug-release using PPy has been demonstrated for a number of drugs

and biomolecules such as dexamethasone, adenosine triphosphate (ATP), naproxen,

nerve growth factor (NGF), neurotrophin-3 (NT-3) and dopamine (Pernaut and Reynolds,
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2000; Kontturi et al., 1998; George et al., 2006; Wadhwa et al., 2006; Jin et al., 2015;

Miller and Zhou, 1987). This not only has important implications in tissue engineering

where scaffolds can go beyond the usual static-substrate status quo, but by incorporating

PPy a complex, dynamic and instructive environment for cells can be fabricated.

PPy’s biocompatibility and potential as an ‘active’ scaffold in promoting neurite growth

under electrical stimulation has been demonstrated both in vivo and in vitro (Kim et al.,

2006; Lee et al., 2009; Bendrea et al., 2011; Balint et al., 2013, 2014; Durgam et al.,

2012; Stewart et al., 2016; Camci-Unal et al., 2014). For instance, Jin et al. (2015)

investigated the potential of using PPy films as an electrochemically controlled growth

factor protein release system for NGF and NT-3, and demonstrated a synergistic effect of

electro-stimulus and NGF/NT-3 release promoted axon elongation of neural cells. Their

work showed potential for using electrochemically controlled release of growth factors

from conductive PPy substrates as a means of directing nerve tissue engineering. In

the case of PPy/chitosan-based nerve conduits, electrical stimulation enhanced nerve

repair compared to control chitosan scaffolds in vivo in rats (Huang and Tang, 2012).

Researchers also developed PPy-based substrates that were capable of modulating

Schwann cell migration, directionality and displacement. Schwann cell migration speed

was postulated to be a function of the electro-active property of the PPy films, whereas

Schwann cell directionality and displacement was governed by electro-conductivity

of the PPy films (Forciniti et al., 2014). Similarly, another group observed that PPy-

PLA fibres modulated neurite proliferation, adhesion, alignment and elongation (Zhou

et al., 2017). This suggests that similar to fibroblasts, physio-chemical, electrical and

mechanical properties of the cellular micro-environment can be designed to influence

neural cell phenotype, proliferation and growth; an application that PPy-based constructs

are adequately suited for.

Although the mechanisms by which electrical stimulation influences various intracel-

lular signalling pathways involved in proliferation, migration and apoptosis have not been
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well-studied, researchers have been able to demonstrate that application of different

forms of exogenous electrical stimulation does indeed alter cellular behaviour and is

capable of influencing neurite elongation, neurite orientation and stem cell differentiation

(McCaig et al., 2005; Love et al., 2018). To this end, various cell types have been

cultured on electro-conductive hydrogels and electrical stimulation has been shown to

play an important role in both tissue development and maturation. Electro-conductive hy-

drogels have found a home in cardiac, bone and neural tissue engineering applications

as well as these cell types are well-known to respond to external electrical stimulation

for development, proliferation and tissue organization (Thrivikraman et al., 2018; Huang

et al., 2017).

Hydrogels once integrated with PPy typically via doping, blending or electrochemical

polymerization become capable of imparting the unique properties associated with said

materials whilst also largely retaining properties typically associated with hydrogels such

as biocompatibility, hydrophilicity, porosity, mechanical properties, and biodegradability

(Koetting et al., 2015; Wanjare and Huang, 2017; Ahadian et al., 2013; Vunjak-Novakovic

et al., 2010; Mihic et al., 2015; Radisic et al., 2004). PPy-based hydrogel substrates

have also been investigated for use as electro-conductive substrates that relay a uniform

distribution of electrical stimulation throughout the construct, and therefore providing

an instructive environment for cell proliferation. One limitation, however, of conjugated

polymer based hydrogels is their low electro-conductivity, typically 10 S · cm−1), when

compared to other conductive materials or stand-alone conjugated polymer based

constructs, typically more than 103–105 S · cm−1, (Balint et al., 2013; Mekonnen et al.,

2016; Li and Khor, 1994). This decrease is due to the natural impedance imparted by the

hydrogel/scaffolding materials. However, this too can be modulated by utilizing differing

quantities of dopants, different dopant molecules, as well as by modulating the charge

transfer to adjacent molecules and the chain length by utilizing different fabrication

conditions. For instance, integration of dopant molecules introduces extra electrons
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that carry charge, which imparts an increase in conductivity (Otero and Martinez, 2016;

Willerth and Sakiyama-Elbert, 2007). Additionally, researchers have demonstrated the

utility of using electro-conductive substrates for facilitating neuronal cell maturation and

tissue development, including other tissues such as skeletal muscle (Green et al., 2008;

Gilmore et al., 2009; Fattahi et al., 2014; Berti et al., 2017), smooth muscle (Rowlands

and Cooper-White, 2008) and bone tissue engineering (Huang et al., 2017; Fahlgren

et al., 2015; Hu et al., 2014; Liu et al., 2013; Zhu et al., 2017). These investigations

constitute electrical stimulation as emerging and effective tool for directing cell behaviour,

one that can be achieved by employing PPy-based hydrogel constructs.

It has been well established that bone undergoes constant remodelling as a function

of mechanical loading (Carter and Caler, 1985). This loading effect induces ionic

currents that stimulate osteoblast activity (Carvalho et al., 1994; Lindsey et al., 1987;

Kohavi et al., 1992). A study by Björninen et al. (2014) compared the effect of HA

and chondroitin sulfate (CS), a common GAG protein, doped PPy films on human

adipose stem cells, under electrical stimulation. They reported that while both films

induced osteogenic differentiation, CS-PPy films supported better stem cell proliferation

and higher mineral deposition under electrical stimulation. A study by Fahlgren et al.

(2015) looked at the effect of PPy films on human primary osteoblasts. The PPy

films were doped with p-toluene sulfonate (PPy-pTS), chondroitin sulfate (PPy-CS),

or dodecylbenzenesulfonate (PPy-DBS). PPy-DBS showed the roughest topography,

highest number of cells adhered and maintaining morphology, evidenced by organized

actin filaments and vinculin attachment points, compared to PPy-pTS or PPy-pCS films.

These aforementioned investigations suggest that PPy-based constructs are capable of

guiding bone regeneration by electrically stimulation, modulating osteoblast and stem

cell activity. Their results also implicate DBSA as an effective dopant for achieving

desirable results of cyto-compatibility. Additionally, as previously mentioned, researchers

were also able to blend PPy with biologically derived materials to create hybrid hydrogel
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constructs, including: PPy-HA, PPy-CS-Collagen, PPy-CS, PPy-Agarose, PPy-silicone,

PPy-Alginate, and PPy-collagen, while retaining their advantageous properties such as

high ion diffusivity rates, porosity, biocompatibility and successfully producing instructive

electro-conductive and/or electro-active scaffolds (Li and Khor, 1994; Hur et al., 2014;

Guiseppi-Elie, 2010; Liu et al., 2011; Björninen et al., 2014; Wang, Gu, Yuan et al., 2004;

De Giglio et al., 2001). Therefore, the amount of materials that PPy can be blended with

is quite expansive. Select samples of this list are included in table 2.2.
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2.6 Review of Collagen and Polypyrrole Integration In-

vestigations

Tissue engineering bodies of work involving PPy typically produced 2D films or layered

3D films via electrochemical polymerization, or fibrous, aerogel or hydrogel constructs

via chemical polymerization which took on the shape of the container of polymerization.

However, these CP-based structures are known to lack creative design; something

that has been a limiting factor for their applications and known for some time now,

but left without intervention. Investigations involving Col-PPy integrations began with

seminal work done by Li et. al., circa 1994. They were able to successfully create

Col-PPy hybrid materials by using FeCl3 as the initiator for chemical oxidation of pyrrole

and demonstrate that collagen and PPy existed as a stable blend using amino acid

analysis and thermogravimetry, while higher concentrations of collagen served to lower

the electrical conductivity of hybrid constructs (Li and Khor, 1994). However, formed

PPy was readily precipitated from solution and only larger concentrations of collagen

produced fibrous constructs. Li and Khor (1994) attributed this effect to incompatibility

between surface energies of PPy and collagen molecules but observed that collagen

was difficult to denature using detergents due to entrapment in the hybrid matrix. Later,

Ateh et al. (2006) were able to develop Col-PPy 2D thin films using electrochemical

polymerization. However, as previously mentioned, cells do not behave the same way

in 2D cell culture as they do in 3D, and the 2D nature of these films majorly limits the

edification from applying these constructs.

Since the foundational work by Li and Khor (1994) and Ateh et al. (2006), PPy

has continued to be combined with a multitude of biomaterials and polymerized using

both the chemical and electrochemical routes Khor et al. (1996); Lam et al. (1999);

Gilmore et al. (2009); Gangopadhyay and Molla (2011); Rowlands et al. (2007); Gelmi

et al. (2016). However, investigations for Col-PPy constructs, or ECM protein-PPy
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constructs, have largely remained stagnant. For instance, Liu et al. (2011) evaluated

the effects of electrical stimulation of rat pheochromocytoma neural cells using Col-PPy-

CS films made by electrochemical polymerization. They demonstrated the superiority

of electrically stimulated Col-PPy-CS substrates over static/unstimulated Col-PPy-CS

and PPy-CS films, as evidenced by increased neurite outgrowth and proliferation on

electrically stimulated Col-PPy-CS substrates. Mekonnen et al. (2016) were able to

develop conductive Col-PPy hybrid aerogels from animal skin waste, while Ravichandran

et al. (2018) were able to produce PPy-collagen based hydrogel capable of sensing

glucose levels that would conform to the tissue by using an injection-casting method as a

delivery mechanism. Similarly, Ketabat et al. (2017) developed an injectable conductive

hydrogel using a collagen-alginate-PPy blend, with favourable viscosity and potential as

DIW ink. Although PPy has been combined with other biomaterials, collagen remains a

natural choice for creating hybrid blends as it is the most abundant protein in our bodies,

provides the bulk structural support to tissue ECMs, and is recognized by most cell

types but also due to its polyvalent electrostatic interactions with ECM-based proteins

(Higgins et al., 2012). For this reason, collagen was chosen as the scaffolding base in

investigations concerning this thesis.

The modifiability of PPy-based constructs affords researchers freedom of movement

which not only facilitates modulation of the fabricated construct’s physical and chemical

properties, but also the subsequent functionalization of the construct, to serve as a

static or dynamic construct. This quality has rendered PPy a promising candidate

for the creation of platforms capable of temporal control over cellular behaviour, both

as standalone constructs and blends/composites. However, despite being shown to

be biocompatible and cyto-compatible, fabricated structures are restricted in feature

and geometric complexity (Ramanaviciene et al., 2010; Vaitkuviene et al., 2013, 2014;

Castano et al., 2004; Wang, Gu, Yuan et al., 2004).

PPy is considered to be insoluble, infusible, and difficult to disperse or maintain as
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a nano-dispersion in most organic solvents (Spinks et al., 2009). This has warded off

any pursuits for 3D printing PPy-based constructs. However, researchers have seen

success with solubilizing PPy in solvents such as DMF, NMP, DMSO, H2O2 and m-cresol

(Leonavicius et al., 2011; Lee et al., 1995). These solubilized solutions have then been

used to produce 2D films and coatings/substrates via chemical oxidation polymerization

and subsequent electro-deposition techniques and shown to be of similar absorbance,

electro-conductivity and ionic conductivity properties as their electrochemically polymer-

ized counterparts (Lee et al., 1995). One complication from using these solvents is that

the viscosity associated with PPy, even when nano-dispersed, is too low for use as a

direct write ink (Lee et al., 1995). Additionally, these aforementioned solvents are highly

toxic, which further complicates the fabrication process for constructs destined for in

vivo implantation experiments or in vitro cell culture testing. Therefore, the problems

associated with PPy processability indicated that any intervention in the polymeriza-

tion process or measures taken towards adapting an AM technique would have to be

introduced either during or prior to polymerization of PPy, or it must be blended with a

material where the blend exists as a stable hybrid.

2.7 Chapter summary

This chapter summarized the necessary background knowledge on AM technique used

in this thesis, properties associated with the ECM and the cellular micro-environment

which have been difficult to emulate in vitro in unison, and justifications behind con-

struct compositional elements utilized in this thesis. This chapter discussed past and

present relevant research done with collagen and PPy in the context of tissue engi-

neering applications. This chapter discussed challenges associated with adapting AM

methodologies to PPy fabrication protocols and provided edification from the current

state of the art which sets PPy-based constructs as potential means of imparting electro-
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chemomechanical stimulation to cells and studying in vivo complexities of the cellular

micro-environment in an amalgamated manner.
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Chapter 3

Materials and Methods for DIW AM of

Col-PPy constructs

This chapter includes the materials and methods used for the development of DIW

Col-PPy constructs. This chapter outlines experimental methods involved in evaluating

the performance and physical properties of said constructs. This chapter includes the

most influential experimental results of the initial exploratory phase of the research

programme, and indicates how the key findings stemming from these initial activities

steered the subsequent direction of the research plan. Challenges associated with 3D

printing PPy are discussed, and the development of Col-Py inks specially formulated

for DIW is outlined. This chapter also includes the specifics associated with the DIW

printing process, including: DIW printer configuration, software, substrates and relevant

process matters.

3.1 Materials

Collagen type I extracted from bovine Achilles tendon (Sigma-Aldrich, Catalogue#

C9879-10G) was solubilized in 0.5 M acetic acid. This concentration of acetic acid

84
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was diluted from glacial acetic acid. 25-gauge needles and 10 CC syringe barrel-

s/cartridges (Nordson EFD). Pneumatic adapter (Optimum, Nordson). Pneumatic

controller unit (Ultimus V, Nordson EFD). Py monomer (Sigma-Aldrich, Catalogue#

131709), DBSA (Sigma-Aldrich, Catalogue# 44198), Iron (III) chloride (FeCI3) (Sigma-

Aldrich, Catalogue# 157740). Aluminum foil (ALCAN, Foil wrap), FEP paper sheets

(McMaster-Carr, Catalogue# 5805T11), 304 stainless steel sheets (McMaster-Carr,

Catalogue# 3254K322), parchment paper (PaperChef, Catalogue# 1000294), PVA

(Sigma-Aldrich, Catalogue# 341584). Vacuum gauge sensor (Testo 552, Catalogue#

05605522), and Vacuum Pump (Robinair 15150 VacuMaster 1.5 CFM). Methylene blue

(MB) (Sigma-Aldrich, Catalogue# M4159). PYREX glass 6-well dishes (CELLSTAR,

Catalogue# 07000645). 38-gauge platinum wires (Sigma-Aldrich, Catalogue# 357367).

PDMS (DOW, Sylgard 184, Catalogue # 1673921). DMEM culture media solution

(Thermofisher, Catalogue# 11885092), 10% fetal bovine serum (Life Technologies,

Catalogue # 12483-020), and 1% Penicillin-Streptomycin (Life Technologies, Cata-

logue # 15140122). 12-well tissue culture plates (Thermofisher, Catalogue# 150628).

Hoechst stain (Sigma-Aldrich, Hoechst 33528), ParaFormaldehyde (Fisher, Catalogue #

41678-500), Alexa Fluor 488 Phalloidin (Invitrogen, Catalogue # A12379).

3.2 Experimental Methodology

3.2.1 Preliminary investigations

This section outlines the experimental results of the initial exploratory phase of the

research programme that informed the subsequent direction of the research plan. Bovine

Achilles tendon Collagen type I was solubilized in 0.5 M acetic acid. This concentration

of acetic acid was diluted from glacial acetic acid and chosen as collagen isolates from

fish skin, bone and fins were previously shown to be well-solubilized using 0.5 M acetic

acid (Nagai and Suzuki, 2000). Solubilization of collagen was performed under constant
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stirring at 0–4◦C to prevent the evaporation of acetic acid, which is known to be volatile.

A decrease in concentration for acetic acid would result in increase in the concentration

of collagen in the resultant volume. This holds important consequence as a change

in the concentration of collagen leads to variance in the rheological properties of the

ink that is to be printed. However, at this point, the initial concern was to evaluate

methodologies from scientific tradition for AM feasibility.

Following the solubilization of collagen using 0.5 M acetic acid, concentrations of

100 mg · mL−1, 75 mg · mL−1, 50 mg · mL−1, 25 mg · mL−1, 10 mg · mL−1, and 5 mg · mL−1

were empirically evaluated for continuous extrusion when expelled through a 25-gauge

needle at pressures ranging from 15–20 psi using a pneumatic extruder. 25 mg · mL−1

collagen solution was observed to be optimal concentration for extruding a steady

flow of the collagen ink at low pressures, i.e. 15–20 psi. Higher concentrations, i.e.

100 mg · mL−1, 75 mg · mL−1, 50 mg · mL−1, were observed to be too viscous and re-

quired higher pressure to extrude, whereas lower concentrations, i.e. 10 mg · mL−1,

and 5 mg · mL−1, were too fluid to print even at reduced pressures and prone to the

aforementioned ’bleeding effect’. However, assessing the 3D printing of collagen inks

as stand-alone 3D constructs was not the aim of the present work, as this has been

previously reported (Inzana et al., 2014; Rhee et al., 2016; Yang et al., 2018; Lode et al.,

2016; Nocera et al., 2018). Rather, the aim of this thesis is to present a novel fabrication

method for 3D printing collagen and PPy-based constructs.

The initial investigation for assessing Col-Py DIW feasibility evaluated powder and

mould cast protocols developed by Machida et al. (1989); Armes (1987); Li and Khor

(1994). As the aim of preliminary investigation was restricted to establishing feasibil-

ity for adapting DIW methodology to traditional fabrication methods, factors such as

temperature, pH and reaction medium were not optimized, and polymerization of these

constructs was conducted at ambient temperatures and humidity.

As shown in Figure 3.1, a 25 mg · mL−1 collagen solution was prepared by solubiliz-
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Figure 3.1: The protocol reported by Machida et al. (1989); Li and Khor (1994) was
evaluated for DIW potential.

ing the appropriate amount of collagen in 0.5 M acetic acid. 0.5 M Py monomer and

0.3 M DBSA, with respect to Py, were then added after sufficient collagen solubilization

(approx. 4 h in an ice bath). The resulting mixture was stirred for 2 h in an ice bath, where

the temperature was maintained at 0–4◦C. Afterwards, the oxidant, i.e. Iron (III) chloride

(FeCI3) was dissolved in 10 mL of 0.5 M acetic acid solution, 3.0 M with respect to Py,

and added in a drop-wise manner (Rapi et al., 1988). The polymerization reaction of Py

in the solution began immediately after adding the oxidizing FeCI3 solution. Polymerized

products subsequently underwent vacuum evaporation at room temperature for 2 h

and were washed with copious amounts of deionized water to remove excess FeCI3.

Obtained products formed precipitates that were too large to print as a DIW ink. There-

fore, the aggregate molecules of Col-PPy were lyophilized, milled and homogenized

into 200 mL of the established collagen working solution. However, despite milling and

sufficient suspension of PPy precipitates into the collagen or 100% ethanol (EtOH)

solutions, DIW cartridges routinely clogged. Making DIW printing difficult. Therefore,

another protocol for producing Col-PPy aerogels, reported by Mekonnen et al. (2016),

was evaluated for AM potential.
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Figure 3.2: The protocol reported by Mekonnen et al. (2016) was evaluated for DIW
potential.
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As shown in Figure 3.2, a 25 mg · mL−1 collagen solution was solubilized in 0.5 M

acetic acid and at 1:1 wt% Py monomer was added to solution in a drop-wise manner.

The resulting mixture was stirred for 4 h in an ice bath, where the temperature was

maintained at 0–4◦C. Then the polymerizing solution, FeCI3 and DBSA dissolved in

0.5 M Acetic acid solution, 2.33 M and 0.3 M with respect to Py, were added in a

drop-wise manner (Jayamurgan et al., 2013). Fibrous aerogels were produced if the

Col-Py-DBSA solution was under constant stirring when the oxidant was added, whereas

bulk aerogels (such as those representative of conventional PPy-based aerogels) which

adopt the shape of their container formed if the Col-Py-DBSA solution was stationary.

Obtained constructs subsequently underwent vacuum evaporation at room temperature

for 2 h. Samples were washed with copious amounts of deionized water and freeze-dried.

Similar to the initial protocols investigated, the polymerization of Py in the solution began

immediately after adding the polymerizing solution, and completed within a few minutes,

as evidenced by the colour transition of the Col-Py-DBSA solution from grey-brown

to completely black, i.e. PPy formation. This protocol delivered bulk aerogels which

occupied the shape of the container, or fibrous strands if the polymerization solution

was added as the solution was being mixed. This protocol too could not be adapted for

DIW and required further development.

Another aspect of the fabrication process required the selection of the appropriate

solvent to contain polymerizing molecules. In order to determine which solvent at

hand was most suited to be chosen as the working polymerizing solvent, electrical

conductivity (in the form of 4-point probe) tests were performed on samples polymerized

in the following solutions, which contained both the dopant and the oxidant: 0.5 M acetic

acid, 100% Ethanol (EtOH) and diH2O. The results of this preliminary investigation

are reported in Table 4.1. The solvent of choice would be one that showed fastest

polymerizing time, but more importantly, the one which demonstrated highest electrical

conductivity. It was observed that samples polymerized in 0.5 M acetic acid and diH2O



www.manaraa.com

CHAPTER 3. MATERIALS AND METHODS FOR DIW AM OF COL-PPY CONSTRUCTS90

would not always polymerize fully, evident from the lack of colour change. Specifically,

the samples were not observed to undergo complete colour change to black, while this

was not observed to be the case for 100% EtOH. It also largely took longer for the

polymerization reaction to complete for these solvents, in comparison to 100% EtOH;

establishing 100% EtOH as the solvent of choice for this composition, which is supported

by past literature (Machida et al., 1989). Subsequently, the electrical conductivity of

these aerogels is also demonstrated through an LED and battery setup, as shown in

Figure 4.5.
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3.2.2 Fabrication of Col-Py as a Direct Write Ink

Preliminary investigations established that inclusions of any intervention for the develop-

ment of a DIW methodology using traditional fabrication protocols for Col-PPy constructs

must fit in before the addition of the oxidant. Therefore, a delay aspect was introduced

to the developed methodology. This delay capitalizes on the physical properties of the

collagen component of this hybrid composition. Although, freezing collagen in moulds

has been utilized for creating foams and hydrogels, no one has sought to print collagen

and subsequently freeze it to retain geometric properties (Yeong et al., 2007). Using a

cold storage chamber to this end seemed most prudent for retaining geometry of 3D

printed constructs. This notion was then expanded to the Col-Py blended inks which

behaved similar to DIW characteristics of standalone collagen materials. Based on

this decision, a fabrication methodology for using Col-Py ink for creating DIW Col-PPy

constructs is reported in this section.

As shown in Figure 3.3, a 25 mg · mL−1 collagen solution was solubilized in 0.5 M

acetic acid. At 1:1 wt% ratio between collagen and Py, the proportionate amount of Py

monomer was slowly added to stirring the solution. The resulting mixture was constantly

stirred for 4 h in an ice bath, where the temperature was maintained at 0–4◦C. This

step is performed at 0–4◦C to prevent the evaporation of acetic acid from the solution,

which is known to be volatile. The resultant mixture was homogenized for 90s on ice,

and then centrifuged at 14 000 rpm for 10 min to remove air bubbles introduced during

the homogenization step. This Col-Py blend was then used as the ink for DIW purposes.

After successfully 3D printing constructs, samples were stored in containers with

dry-ice or -80◦C freezers for short-term or long-term storage, respectively. This step in

the fabrication process represents the aforementioned delay aspect. It is a deviation

from traditional fabrication methods for PPy-based scaffolds.

After samples were sufficiently frozen/solidified, they were transferred to the poly-

merizing solution and gently agitated. The polymerizing solution contained FeCI3 and



www.manaraa.com

CHAPTER 3. MATERIALS AND METHODS FOR DIW AM OF COL-PPY CONSTRUCTS92

Figure 3.3: The fabrication procedure developed for DIW Col-PPy based scaffolds using
chemical oxidative polymerization.
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DBSA dissolved in 2 ml of 100% EtOH, 2.33 M and 0.3 M with respect to Py. 3D

printed samples were then washed with copious amounts of deionized water to remove

excess FeCI3 and subsequently, lyophilized. The development of a freeze-drying unit

is detailed in Appendix A.2. Stoichiometric choices were made with previous literature

in mind (Bjorklund, 1987; Armes, 1987; Li and Khor, 1994), and are further expanded

on in Appendix A.1. In order to conduct experimental evaluations, samples were re-

hydrated using fresh deionized water and stored in a 4 ◦C refrigerator to keep level of

dehydration to minimum. The major contribution of this thesis, that is, the development

of a fabrication technique for DIW printing PPy-based scaffolds, is demonstrated as

constructs retained their 3D printed geometry and underwent complete polymerization,

as evidenced by the colour change to black. This colour change is benchmark for

indicating formation of PPy.

The duration for samples to undergo complete polymerization for each of the three

concentrations of PPy was recorded by observing colour change of the constructs

from grey-brown to black, indicative of Col-Py to Col-PPy transition. This is reported in

Table 4.2.

3.2.3 Relevant DIW AM Processes and Parameters

The 3D printer used for DIW purposes was a commercially available DeltaMaker printer

which was fitted with a paste extrusion system. Its design, associated firmware and

framework for the DIW apparatus are reported in detail by Holness and Price (2018).This

printer differs from the most common design for 3D printers, that is, the cartesian

configuration, as it operates in a delta configuration (ASTM Standard ASTM52900 -

15, 2015). The DeltaMaker printer holds advantage over its competitors due to its

open-source nature, easy modifiability, and due to its stationary print bed.

The DIW process is still incumbent on traditional AM processing such as CAD mod-

elling, slicing CAD models to g-codes (in this case, using slicing software Simplify3D)
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Figure 3.4: A schematic detailing the DIW apparatus.

and assignment of essential print parameters such as print layer heights, infill, speed,

temperature and extrusion-widths (as a function of extruder nozzle diameter and nozzle

height from the print-bed, in case of DIW). These parameters enable process opti-

mization for the extrusion of any specific material. Of the aforementioned parameters,

temperature holds no consequence.

Following the assignment of print parameters, ink materials were loaded into 10 CC

syringe barrels, which are closed off with dispensing needles at the nozzle end and

include a piston at the end of the barrel to ensure all of the material in the barrel is

extruded. The barrels are then attached to an adapter (Optimum, Nordson) which

connects to the pneumatic valve. Therefore, creating DIW ready cartridges. These

cartridges were then mounted on to the modified extruder compartment and the g-

code for select CAD model was run where an auxiliary micro-controller which relays

the extrusion signal from the g-code commands to the pneumatic valve to initiate and

terminate extrusion cycles. Whereas, extrusion onto the print bed is controlled by the

communication between the DeltaMaker, the micro-controller and the pneumatic valve.

As the pneumatic valve functions through discrete bursts of pressure, an increase in
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the steps-per-mm conversion factor was required to effectively reduce any delay or gap

between bursts. This conversion factor was empirically adjusted until the delay between

extrusion cycles became indiscernible, and the DIW could be extruded continuously.

One shortcoming from the continuous application of pressure is risk of over-extrusion.

However, that too can be modulated by increasing print speeds, which deposits less

material resulting in decreased trackwidths.

Substrates for DIW printing

The last component of the DIW process, that is, the substrate onto which the Col-Py

ink would be printed, was investigated. Initially, aluminum foil was selected because

of its ready availability, inexpensiveness and good thermal conductivity. Aluminum foil,

irrespective of whether the dull or shiny side was used as substrate surface, allowed

quick transference of freezing temperatures when samples printed on this substrate were

shifted to a dry-ice container or -80◦C freezer for long-term or short-term storage. How-

ever, removal of printed structures, especially smaller structures, from the foil required

great manoeuvring and the beneficial thermal conductivity proved disadvantageous at

this stage as 3D printed structures were seen to return to their solubilized form within

10s of being taken out of the dry-ice container. 3D printed constructs were also prone to

breakage if mishandled during the removal from the foil substrate. Due to this reason,

other substrates were investigated.

FEP paper sheets were evaluated because of their adhesive back as well as because

of their non-adhesive surface that provided low surface energy. The adhesive aspect

of this substrate made it difficult to remove 3D printed structures, and transfer to the

polymerizing solution. In contrast, structures printed on the non-adhesive surface of the

FEP paper sheets were observed to have an increased trackwidths that were observed

to be retained on the previously investigated substrate, i.e. aluminum foil. Additionally,

transfer from the print bed to freezing container proved difficult as even subtle movement
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caused the 3D printed structures to slide on the non-adhesive substrate and lead to loss

in print geometry. Thus, FEP paper as the substrate of choice was scrapped.

Next, hardened 304 stainless steel sheets were investigated as they were observed

to retain their thermal energy longer than aluminum foil. The stainless sheets were left

in dry-ice for 5 min to cool and subsequently transferred to the print bed. The Col-Py ink

was printed directly onto these sheets. Although the cold nature of this substrate prevent

extruded tracks from bleeding or losing their resolution, it was impossible to remove the

printed structures from the sheet without breakage. Thus, 304 stainless steel sheet as

the substrate of choice was scrapped.

Next, parchment paper was investigated as it is known for its moisture resistance

and non-stick properties. Printing on this substrate failed as the printed areas were

affected by the acetic acid presence in the ink and resulted in wrinkling of the substrate.

This lead to distortion in the geometry of the prints. Therefore, parchment paper as the

substrate of choice was also scrapped.

Lastly, a 10 wt% PVA solution was mixed at 70◦C for 3 h, and subsequently spun-

coated onto microscope slides at 1 000 rpm for 3 min to create thin films. PVA is

known to dissolve in the presence of water (Mallapragada and Peppas, 1996). Col-Py

inks were printed directly onto these films. Since, the polymerizing solution of choice

selected was 100% EtOH, the PVA dissolution/removal step must necessarily succeed

the polymerization step, throughout which structures would have to remain fixed to the

substrate. PVA films bearing the printed constructs were cooled on dry-ice, transferred

to the polymerizing solution and then to diH2O for removal of excess oxidant and the

PVA substrate. The freezing of PVA and the 3D printed constructs only served to limit

the infiltration of oxidant molecules at the bottom face of the printed constructs, as this

face of the structure was observed to not always undergo complete polymerization,

evidenced by a lack of colour change to black. Additionally, the freezing of the PVA films

further increased dissolution time and subsequent recovery of polymerized samples.
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Vaccuum PumpPressure Guage

(a) schematic (b) physical setup

Figure 3.5: The freeze-drying apparatus is shown as both a (a) schematic and (b)
physical setup.

Therefore, aluminum foil was selected as the substrate of choice, begrudgingly, as

it still required great skill in manipulation for sample removal. Although the ink could

be used to produce 3D structures of any size, removal from the printing substrate

remains a limiting factor. Structures printed under 250 µm extruded-width (via 27G

needle) presented great difficulty in removal from the substrate of choice. The inability

to remove structures essentially represented failed prints, as any attempts at removal

resulted in breakage of the extruded structure. Further development of this portion of

the AM fabrication process is warranted, with a focus on recovering small and finer

printed structures as the printing substrate still limits the resolution at which PPy-

based structures can be produced and successfully retrieved, which in turn limits their

application.

3.2.4 Freeze-drying Apparatus

The final step in the fabrication process for creating Col-PPy constructs involves freeze-

drying 3D printed constructs. Thermally induced phase separation, via freeze-drying,

where the cooling and freezing processes imposes formation of hydrogen bonds between

collagen fibres and cross-linking via crystallization of solvents and their subsequent

removal, in addition to the creation of interconnected network of pores and micro-

architecture that can be modulated by controlling the freezing temperatures (Oh et al.,
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2012; Annabi et al., 2010; Offeddu et al., 2015). This increases mechanical properties of

the construct and pore formation by immobilization in a glassy (chemically inert) matrix,

which increases the number of electro-active sites available (Pikal, 1999). Depicted in

Figure 3.5 is the freeze-drying system developed for this thesis project. The system

includes a vacuum gauge sensor (Testo 552, Catalogue# 05605522) attached to the

sample containing stage, which is held at a -10◦C using acetone and ice, and a cold

trap stage, which serves to freeze vapour solvent molecules and prevent them from

damaging the vacuum pump.

3.3 Characterization Methodology

3.3.1 Rheology

For DIW applications, it is vital to achieve proper control over dimension and geometry

of extruded material. Therefore, at this point in my thesis, it was important to evaluate

the flow characteristics of Col-Py inks for shear thinning behaviour. Understanding the

flow properties of the ink allowed adjustment of DIW parameters such as print speed,

extrusion pressure and nozzle diameter to enable the fabrication of high-resolution 3D

Col-PPy structures. To this end, the rheological properties of 25 mg · mL−1 collagen so-

lution with variable concentrations of Py were compared against the base 25 mg · mL−1

collagen composition (Figure 4.1).

Rheological experiments were performed using a Rheometrics stress rheometer with

parallel plate geometry, by running dynamic strain-rate sweeps from 0.1–100 rad · s−1.

From this data, a relationship between viscosity and shear rate for 25 mg · mL−1 collagen

and the various Py concentrations reported in Figure 4.1 was established, using the

power law model as shown below:

log (η) = (n − 1) · log(γ̇) + log(η0), (3.1)
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where, η, n, γ̇, and η0 represent apparent viscosity, power law index, shear rate, and

zero viscosity, respectively.

In order to investigate optimal pneumatically controlled extrusion parameters for the

DIW process, and whether extruded trackwidths could be predicted, a mathematical

model on the resolution of bioprinting bio-inks reported by Suntornnond et al. (2016)

was utilized. The model essentially establishes a correlation between the power law

model for the viscosity of shear thinning materials and the print process parameters,

specifically:

d (v ,∆P) = D2

√
1

32ηL
·
(

4n
3n + 1

)
·
∆P
v

, (3.2)

where d, D, L, η, n, ∆P, and v represent theoretical trackwidth, nozzle diameter,

nozzle length, apparent viscosity, power law index, gauge pressure, and print speed,

respectively.

Using this model, theoretical values were generated and compared against empirical

extrusion width data as a function of pressures applied, at various print speeds for Col-Py

1:4 wt% composition. Results from these investigations are included in Figure 4.2. It was

empirically established that the Col-Py inks flowed well at low pressures, ranging from

15–20 psi. However, process refinement was required for increasing print resolution.

For the verification of rheological modelling and extrusion parameters, S-shaped

structures (n= 4 samples per condition, 4 measurements per sample) were printed

at various speeds and pressures (shown in Appendix A.2). Extruded trackwidths

were analyzed using optical microscopy (Dino-lite, AnMo). Obtained images were

subsequently analyzed using Fiji and trackwidths were measured and. Mean trackwidths

for each condition are reported. Confocal optical imaging was performed on cross-

sections of collagen standalone and the Col-PPy 1:4 wt% structures, as shown in

Figure 4.4, using a LSM 5 Duo Vario microscope using Zen Software (Zeiss). Additional

examples of 3D printed structures are included in Appendix A.2.
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3.3.2 Electro-Conductivity

For each of the samples evaluated (n=12 for DIW each concentration of DIW Col-PPy

constructs, n=6 for fibrous aerogels, n=6 bulk aerogels), a fixed current of 0.01A was

run between two outer probes and voltage is measured between the two inner probes of

2.0 mm spacing in contact with the sample, and consequent resistivity was recorded

three times per sample. This constitutes a 4-point probe technique and is primarily

performed for the measurement of resistivity, where conductivity is given by taking the

reciprocal of measured resistivity.

Electrical conductivity tests were performed using a Keithley 2611 source metre on

as synthesized Col-PPy 1:1 wt%, 1:2 wt%, and 1:4 wt% 15 mm × 10 mm × 1.5 mm

samples, and on Col-PPy 1:1 wt% fibrous aerogels and bulk aerogel samples. Due to

the change in dimensions post-freeze drying, subtle changes in sample thickness was

measured by using callipers and accounted for in calculations. It is important to note that

for the fibrous aerogel and bulk aerogel samples were of indeterminate size due to their

irregular dimensions, therefore, electrical conductivity measurements respond to the

average size of the constructs produced as the true thickness of the samples measured

could not be accurately measured and corrected for. This leads to an underestimation

of electrical conductivity values. Electrical conductivity was qualitatively demonstrated

by using DIW printed constructs to complete the circuit of power an LED with 9V battery

in Figure 4.5 and Figure 4.8. In the 4-point probe experiments reported in this section,

electrical conductivity is quantitatively reported (Table 4.4). Resistivity ‘p’ is given by:

p =
V
I

Cf 2πd , (3.3)

where Cf , d , V , and I represent the correction factor, probe spacing, voltage and current,

respectively. Correction factors were chosen based on the ration between geometric

thickness, measured via vernier callipers, of the structures evaluated and probe spacing
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between the 4-point probes.

Electrical conductivity of the 3D printed samples was calculated using the following

formulas:

σ =
1
p

, (3.4)

where, σ, p represent conductivity and resistivity, respectively.

3.3.3 Electro-activity: Cyclic Voltammetry

Cyclic voltammetry (CV) experiments were performed with a computer controlled Keithley

2611 source metre. CV was carried out using a 3-electrode cell, 15 mm × 10 mm ×

1.5 mm samples (n=3 per DIW Col-PPy constructs) were submerged into the working

solution using micro-alligator clips to serve as the working electrode, a 50 mm×25 mm×

1 mm a 304 stainless steel sheet was used as the counter electrode, and an Ag/AgCl

electrode was used as the reference electrode. Potential cycling was performed at

potentials ranging from ± 0.2 V to ± 2 V vs Ag/AgCl at a scan rate of 10 m V/s, 20

m V/s, 50 m V/s, 75 m V/s, and 100m V/s in both aqueous 0.1 M NaDBS(aq) solution

and DMEM solution. Additionally, to study the lifetime of the constructs, the long-term

electro-active capability was examined for 500 cycles of testing. The schematic shown

in Figure 3.6 depicts the experimental setup used in CV investigations.

3.3.4 Electro-activity: Spectrometry

A cationic dye, methylene blue, was used to demonstrate bulk electro-active potential of

DIW Col-PPy structures produced using the fabrication technique developed in thesis

(Cione et al., 1998; Ozdemir et al., 2009). To this end, 3D printed construct were variably

electrically stimulated in 100 mg · mL−1 MB dye aqueous solutions containing the MB

dye for 10 min at the first testing stage. Following electrical stimulation at the first stage,

samples were washed twice with fresh diH2O. Samples were then electrically stimulated
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RECEWE

Figure 3.6: The CV experimental setup where a Col-PPy sample is used as the working
electrode (WE), a 304 stainless steel sheet was used as the counter electrode (CE).
Potential is applied to the WE against an Ag/AgCl reference electrode (RE).

Electrical Stimulation in

100 mg/L MB dye

       Two washes with      

fresh diH O

1st Electrical stimulation stage Wash stage 2nd Electrical stimulation stage

Electrical Stimulation in

fresh diH O22

Figure 3.7: The experimental setup where the 1st stage of electrical stimulation was
performed in MB dye solution for 10 min, then twice washed in fresh diH2O, and finally,
electrically stimulated at the 2nd in fresh diH2O for 5 min.

again for 5 min in the opposite potential direction, relative to the applied potential at the

first stage of testing, in fresh diH2O to study the release of MB dye. Adsorption and

release of the dye as a result of electrical stimulation in the 2nd stage of the experimental

setup is reported in Figure 4.12.

Spectroscopy experiments were performed with a Cary 60 UV-vis (Agilent Tech-

nologies) spectrophotometer using Cary WinUV software on 1 cm2 quartz cuvettes

filled with 5 ml solutions. 10 mm × 10 mm × 1.5 mm DIW printed Col-PPy 1:4 wt%

samples (n=4 per experimental condition) were housed in diH2O at 4◦C prior to any

testing, rather than in MB dye solution to ensure no passive capture of the dye would

confound results. Samples were subjected to electrical stimulation in PYREX glass
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6-well dishes.38-gauge platinum wires were used as both the WE and CE to effectively

create a 2-electrode cell which provide direct current (DC) electrical stimulation to 3D

printed constructs in MB dye solution, as indicated in Figure 3.8. This setup is similar to

the design reported by Mobini et al. (2016) and observed to effectively impart electrical

current to individual constructs contained in the wells. Circuit connectivity was confirmed

by using a multimeter once electrodes were submerged in dye solution. The range

for the absorption spectroscopy was set between 550 nm and 750 nm as the peak

absorbance of MB is observed near 665 nm (Ozdemir et al., 2009).

Prior to any absorbance testing, a baseline was established by measuring the ab-

sorbance of diH2O. Subsequently, standards of MB dye ranging from 0.1 − 1.0 mg/L

were measured to provide points of reference against the concentration of MB dye re-

leased during the second stage of the experimental setup (as depicted in Figure 3.7).The

first batch of experiments involved evaluating the extent of MB dye release as a conse-

quence of electrical stimulation. Samples were submerged in 12 ml of 100 mg/L MB

dye solution, electrically stimulated for 10 min at ±1 V to allow MB dye adsorption, then

washed twice with 12 ml of fresh diH2O to decrease risk of passive MB dye release.

Samples were then electrically stimulated again for 5 min at ±1 V at the second stage

in a fresh volume of 12 mlof diH2O. Post-electrical stimulation at the second stage of

testing, samples were removed at 5 ml of the volume was recovered for spectroscopy

evaluation. The process noted in Figure 3.7 was held consistently for all experimental

conditions.

The second batch of experiments were performed to evaluate the degree of leeching.

Samples underwent variable electrical simulation at the first stage, were then washed

twice with 12 ml of fresh diH2O. However, unlike the first batch of experiments, samples

did not experience electrical stimulation at the second stage and were left to sit in its

absence for 5 min. Subsequent release of the MB dye in this volume as a result of

leeching was measured. A third set of experiments for evaluating the degree of passive
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adsorption in the absence of electrical stimulation were also performed. Samples were

left in 100 mg/L MB dye solution for 10 min, then washed twice with fresh diH2O.

Samples were subsequently placed in a fresh volume of diH2O for 5 minwhere they

did not experience any electrical stimulation. Subsequent release of the MB dye in

this fresh volume of diH2O as a result of passive adsorption was measured. Results

from these experiments are summarized in Figure 4.12, additional figures are included

in Appendix A.4 to provide further clarification.

Concentrations of MB dye released during each experimental condition were calcu-

lated using Lambert-Beer’s law:

Abs = c · L · εx = log
(

Io
I

)
, (3.5)

where Abs, c, L, εx , Io, I represent absorbance, analyte concentration, optical path

length, the molecular extinction coefficient, incoming light intensity to the sample, and

light intensity transmitted across the sample, respectively. The molecular extinction

coefficient was appropriated from Prahl (2001). Results from these calculations are

reported in Figure 4.13 and Figure 4.14.

3.3.5 Electro-activity: Actuation Profiling

The potential of the composition as a robust electro-actuator was investigated. To this

end, the actuation performance of DIW printed Col-PPy structures, i.e. Col-PPy 1:4 wt%

monolayer grids and rectangular PDMS-Col-PPy 1:4 wt% bilayers was evaluated.

Actuation performance experiments were performed with a computer controlled a

Keithley 2611 source metre. 10 mm × 10 mm × 1.5 mm Col-PPy 1:4 wt% monolayer

grid samples (n=3 per DIW Col-PPy construct) were 3D printed and initially housed in

diH2O at 4◦C prior to any testing. Samples were subjected to electrical stimulation in

PYREX glass 6-well dishes. Samples were electrically stimulated in a well using the
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Figure 3.8: A 2-electrode electrical stimulation setup for absorbance and grid actuation
experiments is shown. A Col-PPy sample was placed between 38 gauge platinum wires
which served as working electrode (WE) and counter electrode (CE) as labelled. This
figure includes (a) an upside-view and (b) a sideview of the setup.

same 2-electrode setup outlined in Figure 3.8 using 38 gauge platinum wires, which

served as both the WE and CE. DMEM solutions were used to establish how the

construct would respond in a solution representative of cell culture media constitution,

specifically, establish the actuation profile of the 3D printed constructs was of great

significance prior to use in cell culture experiments for electromechanically stimulating

cells. The connectivity of the electrodes to create a circuit was confirmed using a

multimeter. Observed actuation response of pores is reported as a function of applied

potential. All experiments were conducted under an optical microscope, where a Sony

40.1 megapixel camera was mounted onto the ocular lens of an optical microscope

to record videos of actuation response at 25× magnification. Videos were then split

into second-by-second still frames, and select pores were analyzed using Fiji software.

Additionally for each figure included annotations for the pores corresponding to each

sample and experimental condition are included in Appendix B.1).

All % area change measurements reported were determined by manually tracing

pores between different images. This was done to reduce any error implicit from using

threshold tools available in Fiji. The difference in using internal threshold algorithms and
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manual tracing is demonstrated in Figure 5.3. Any error associated with pore expansion

and contraction measurements is due to unskilled tracing of the proper, and ascribed to

be minimal. Since the traced shape resembles a complex polygon, area is calculated

by sectioning off pixels present in the polygon into slices divided into x and y values

representative of the simpler shapes such as triangles. The generated values from

these calculations are then referenced against a scale set in the beginning and all %

area changes are reported after being normalized to the 1s frame from obtained videos.

Typical current flow for Col-PPy 1:2 wt% and 1:4 wt% samples from applying ±1 V at

0.00833 Hz is also reported.

Next, 40 mm × 5 mm × 1.5 mm DIW Col-PPy 1:4 wt% samples were produced.

PDMS slides were spin-coated onto microscope glass slides at 1 000 rpm for achieving

uniform thickness. In order to create functional bilayers, dried Col-PPy 1:4 wt% samples

were flattened against the slide with PDMS coatings. To cure PDMS against the Col-PPy

samples, flattened samples were left at room temperature for 48 h on the spin-coated

PDMS slides. Prior to conducting any actuation tests, bilayer samples were hydrated

by leaving the samples submerged in the working solution for 30 min under agitation.

This was done so that samples may adjust to the new solution’s osmolarity. Results

from actuation performance evaluations are reported in table 5.2 and table 5.3 for tests

conducted in DMEM media solution and 0.1 M NaDBS aqueous solution, respectively.

Prior to performing actuation tests, the swelling ratio of the dog bone samples was

evaluated and is reported in Table 5.1.

Actuation tests were performed in both 0.1 M NaDBS(aq) solution and DMEM so-

lutions. The NaDBS(aq) solution provided a less complex media to understand how

the blended composition of constructs behaved in media of less amounts of present

species. Similar to the setup used in CV testing, the sample was clipped above the

solution by a micro-alligator clip, while majority of the sample remained submerged in

solution and effectively served as the WE. A 38 gauge platinum wire served as the CE.
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CEWE

Figure 3.9: The 2-electrode electrical stimulation setup used for conducting bilayer
actuation experiments is shown.

Bilayer actuation performance experiments were performed with a computer controlled a

Keithley 2611 source metre. All length changes are referenced to the quadrille paper in

the background and all angle changes are in reference to the plane shown in Figure 3.9.

3.3.6 SEM

SEM imaging was performed with a Hitachi S-3400N microscope equipped with an

Oxford Instruments INCA PentaFETx3 EDAX detector. Col-PPy 1:1 wt%, 1:2 wt%,

1:4 wt% and collagen standalone 3D printed grids underwent imaging at the top surface

and cross-sectional levels, and subsequent EDAX elemental mapping.

SEM imaging was initially performed on dry and damp Col-PPy 1:4 wt% samples

to determine if SEM imaging under low pressure would adequately capture sample

topography and porosity in its semi-hydrated/damp state, as the true state of the sample

is represented in its hydrated state. Results of this comparison are shown in Figure 5.13,

which show that SEM imaging under variable pressure could be performed and produced

sufficient images showcasing macroscopic and microscopic features of the construct.
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However, clearer images were produced when samples were sufficiently dehydrated as

surfaces features were observed to be out of focus when samples were left damp/hy-

drated. Additionally, these preliminary images indicated that pore structures and fibres

displayed collapse which resulted in an underestimated depiction of porosity and surface

topography. Therefore, monolayer Col-PPy 1:1 wt%, 1:2 wt%, 1:4 wt% grid samples

were left to dry at room temperature for 48h to remove their water content to prepare for

SEM imaging, while freeze-dried collagen standalone grid structures were imaged in

their dry state.

Samples (n=1 per condition) were then mounted and imaged. SEM imaging was

performed on these dehydrated samples to qualitatively evaluate differences in degree of

porosity and morphology between the DIW Col-PPy constructs and collagen standalone

structures due to increasing PPy presence. SEM imaging was performed on sample

cross-sections to evaluate the consequence of PPy inclusion relative to the scaffolding

base composition, i.e. collagen standalone samples. Monolayer grid samples were

cry-fractured using liquid N2 for creating cross-sections along the middle-most row of

the grid. SEM imaging of cross-sections was performed to evaluate internal porosity,

pore size and homogeneity (Figure 5.15).

Additionally, EDAX elemental mapping was performed on cross-sectioned samples

to identify their elemental composition and to clue on the extent of doping of PPy from

the inclusion of DBSA in the polymerization step of the fabrication process (Figure 5.16).

Table 5.4 reports on results from elemental mapping which implicate iron and sulphur

presence corresponding to oxidant and dopant presence, respectively.

3.3.7 Mechanical Evaluation

Assessments of mechanical properties of biological materials have been observed to be

dependent on the method of deformation, where reports of elastic behaviour can span

several orders of magnitude (McKee et al., 2011; Akhmanova et al., 2015). The most
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basic method for mechanical evaluation of materials is the uniaxial tensile test, where

the sample undergoes tensile deformation at a fixed displacement rate along a single

axis until failure. For the determination of elastic deformation properties of 3D printed

Col-PPy constructs, the “Standard Test Method for Tensile Properties of Thin Plastic

Sheeting” (ASTM D882) was used and produced thicknesses of specimens were less

than the allotted 3.2 mm designation (ASTM Standard ASTM52900 - 15, 2015).

Dogbone shaped samples in accordance with ASTM D1708 were prepared by 3D

printing the collagen-Py blended inks at varying concentrations of Py, i.e. 1:1 wt%,

1:2 wt%, 1:4 wt%, as well as DIW printing of collagen standalone ink (ASTM Standard

ASTM52900 - 15, 2015). 3D printed ASTM dogbone samples (n=1 per testing condition)

underwent the fabrication procedure outlined in section 3.2.2, with the exception of

collagen standalone constructs. Samples were left to freeze in dry-ice containers

and immediately subjected to freeze-drying for 24h. All freeze-dried samples were

rehydrated in DMEM media overnight prior to performing tensile evaluations. This

solution was chosen to allow samples to acclimate to physiological osmolarity and swell

accordingly. Sample thicknesses were measured by callipers, ranging between 0.95 mm

and 1.25 mm after freeze-dried samples were rehydrated in DMEM media overnight.

Caliper measurements were performed immediately prior to tensile evaluations, and are

included in section B.3. Stretch-break tensile tests were performed for each experimental

condition by a CellScale Univert universal tester with a 10 N load cell under a fixed strain

rate of 2 mm · min-1, at ambient temperature and humidity. The aforementioned load

cell was selected due to the next available load cell, i.e. a 1 N load cell, being unable to

cover the stress-strain behaviour from implemented deformations. Tensile tests involving

electrical stimulation were performed using a Keithley 2611 source metre. Subsequent

change in physical properties was assessed by implementing the same stretch-break

tests as done for previous samples.

For each experimental condition, the Young’s modulus (E), maximum strain before
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fracture, ultimate tensile strength (UTS), and the fracture stress values were determined

by implementing force versus displacement data as stress versus strain by the following

equations:

σ =
F
A

, (3.6)

where σ, F , A, represent stress, force applied, and cross sectional area of the sponge.

ε =
δl
lo

=
lf − lo

lo
, (3.7)

where ε, δl , lf , lo, represent strain, change in longitudinal length, final longitudinal length

and initial longitudinal length.

E =
σ

ε
, (3.8)

where E , σ, ε, represent Young’s modulus of elasticity, stress, and strain.

With the exception of yield strength values which were estimated after yielding of the

sample from the stress versus strain curves, rather than applying 0.2% offset rule, as

the plastic behaviour of the measured constructs is limited and difficult to discern due to

artifacts from the instrument (shown in Appendix B.1). Results from stress versus strain

calculations are reported in table 5.5.

3.3.8 Cyto-compatibility Evaluation

Prior to establishing cyto-compatibility for an extended period of time (i.e. 7 days), a

preliminary experiment used 10 mm × 10 mm × 0.5 mm Col-PPy 1:4 wt% grid samples

(n=4) to account any challenges associated with cell culture, immunocytochemical

staining and post-staining. Samples were sterilized by in accordance with directions

suggested by the provider for Bovine Achilles tendon Collagen type I. Sterilization, and

subsequent rehydration, was performed by rinsing samples in an ethanol series protocol
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previously reported for chitosan hydrogels (Madihally and Matthew, 1999). Samples

were kept in 100% ethanol overnight, then in decreasing amounts of ethanol solutions

under agitation and exchanged every 2h, i.e. 100%, 95%, 90%, 80%, 70%, 50% and

lastly, 0%.

Following the sterilization protocol, samples were housed in sterile diH2O until

seeding of 25, 000 human BJ fibroblast cells. Samples were submersed with DMEM

solution, 10% fetal bovine serum, and 1% Penicillin-Streptomycin with the appropriate

volume for 12-well tissue culture plates. Samples were then placed in typical tissue

culture incubation conditions (i.e. 95% air, 5% carbon dioxide (CO2), 37◦C). Samples

were retrieved for immunocytochemical staining 4 days following initial cell seeding.

Hoechst stain was performed to visualize nuclei of human BJ fibroblast cells prolifer-

ating on 3D printed Col-PPy 1:4 samples. Cells were fixed by adding 4% ParaFormalde-

hyde in 1X PBS buffer, permeabilized with 0.1% solution of Triton 100X dissolved in

1X PBS buffer solution, incubated with 1% BSA (Blocking solution/buffer A) for 30 min

and incubated in 1:1000 diluted Hoescht stain for 20 min at room temperature. Stained

cells were housed in 1X PBS buffer, protected from light. Subsequently, samples were

imaged using an AxioImager.M2m with Zen software (Zeiss) at 20× magnification

as extended depths of view. Results of this preliminary investigation are shown in

Figure 5.20.

Preliminary investigations revealed viability for conducting an extended cyto-compatibility

experiment. 10 mm × 10 mm × 0.5 mm collagen standalone monolayer grid samples

((n=16) were DIW printed to serve as controls against 10 mm×10 mm×0.5 mm Col-PPy

1:4 wt% grid samples (n=16). Collagen standalone samples were selected to serve as

control as collagen was used as the base scaffolding/hydrogel component and because

cyto-compatibility and biocompatibility for collagen substrates has been demonstrated

repeatedly (Boyce et al., 1988; Chevallay and Herbage, 2000; Gelse, 2003; Zeugolis

et al., 2009; Achilli and Mantovani, 2010; Gordon and Hahn, 2010; Gigante et al., 2013;
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He and Theato, 2013; Antoine et al., 2014; Chattopadhyay and Raines, 2014). Both

sample types underwent the aforementioned ethanol series sterilization and rehydration

process.

Two samples from each type were subjected to the same cell culture conditions

outlined in section 5.4.1 at two independent occasions (n=8 per sample type for two

each set of experiments, and a total of 32 samples per testing batch). 4 sample retrieval

and fixation time points post-seeding were chosen for the two sets of 7-day periods

relative to initial cell seeding, specifically: 6h, day 1, day 4, day 7.

These experiments were conducted to qualitatively establish extended cyto-compatibility

as a consequence of fibroblast cell attachment and survival over the allotted time pe-

riod. A similar immunocytochemical staining protocol as outlined in section 5.4.1 was

utilized. Hoechst staining and Alexa Fluor 488 Phalloidin staining was performed on

collagen standalone and 3D printed Col-PPy 1:4 samples to visualize nuclei and actin

filaments of human BJ fibroblast cells to evaluate potential changes in cell morphology

for each sample type. Cells were fixed by adding 4% ParaFormaldehyde in 1X PBS

buffer as samples were retrieved per sample retrieval time points. On the final retrieval

day, all samples previously fixed with ParaFormaldehyde were permeabilized with 0.1%

solution of Triton 100X dissolved in 1X PBS buffer solution, incubated with 1% BSA

(Blocking solution/ buffer A) for 30 min, and then incubated with 1:40 Phalloidin stain for

20 min. After performing Phalloidin actin staining, samples were incubated in 1:1000

diluted Hoescht stain for 20 min at room temperature. Stained cells were housed in

1X PBS buffer, protected from light. Subsequently, samples were imaged using an

AxioImager.M2m with Zen software (Zeiss) at 5× and 20× magnification. Results of

this investigation are shown in Figure 5.21 and Figure 5.22.
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3.3.9 Confocal Laser Scanning Microscopy Evaluation

Confocal Laser Scanning Microscopy (CLSM) was conducted on 10 mm × 10 mm ×

0.5 mm collagen standalone and Col-PPy 1:4 wt% grid samples. A LSM 5 Duo Vario

Microscope using Zen Software (Zeiss) was appropriated to provide topographic contrast

and to supplement SEM imaging, as SEM imaging required samples to be sufficiently

dried which understated topographical properties and surface roughness of constructs.

CLSM results are reported in Figure 5.23.

3.4 Chapter Summary

This chapter outlined the materials and methods used in the thesis. This chapter in-

cludes the process of the initial exploratory phase of the research programme, which

lead to the development of the DIW AM fabrication methodology for Col-PPy constructs.

Challenges encountered during the development of the DIW AM methodology for PPy

were discussed, and subsequent, successful development of Col-Py inks specially

formulated for DIW is outlined. This chapter provided relevant knowledge on the config-

uration of the DIW printer and associated process matters. Lastly, this chapter outlined

the experimental methods and characterization evaluations performed for assessing the

functional aspects and physical properties of said constructs.
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Chapter 4

Characterization of Direct-ink Write

printed Collagen and PPy-based

constructs: Part 1

This chapter begins with discussion of the hypothesis which lead to the development of a

DIW AM fabrication methodology for Col-PPy constructs. Characterization of the rheolog-

ical behaviour of ink materials at varying concentrations of Py are reported. Additionally,

optical imaging is employed to evaluate the degree of integration between collagen and

PPy components within 3D printed constructs at varying PPy concentrations, and to

exhibit various structures produced using the DIW methodology. In this chapter, the

major functional properties innate to PPy-based constructs, i.e. electro-conductivity and

electro-activity, are evaluated to provide insight towards arenas in which the DIW printed

hybrid composition can be effectively applied, as well as provide edification on areas

which warrant further development.
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4.1 Discussion of DIW AM methodology

The lack of development in fabrication methodology has been withstanding motif for

PPy-based constructs for some time. Despite the low immunogenicity and the potentially

biomimetic topographical, chemical and mechanical cues imparted by a PPy substrate,

and modifiable electroactivity, electroconductivity and biodegradability properties that

make PPy-based structures promise, such platforms for tissue engineering applications

remain gravely limited to fabrication of structures simple and basic in design. This

limitation is due to dependence on a fabrication methodology that has remained pre-

dominately stagnant since its advent (Li and Khor, 1994; Atala et al., 2012); therefore,

limiting application and translation prospects which warrant introduction of feature and

geometric complexity to constructs under study.

The nearest claim to be made towards truly 3D printing PPy-based hydrogel struc-

tures is the work done by Weng et al. (2011, 2012). Weng et. al. inkjet printed collagen

droplets on top of pre-produced, patterned and inkjet printed nanoparticles of PPy

films. PPy films were produced as PPy nanoparticles dispersed in the ink were pushed

through a 25.0 V nozzle head, which served to polymerize PPy aggregates as the ink

was ejected from the nozzle in a drop-like manner. Subsequently, these films were

seeded with a population of PC12 cells and electrically stimulated (Weng et al., 2011,

2012). Although a unique method of AM is utilized here, produced PPy films are not

3D. Rather these thinly layered films, where the integration between successive layers

is a dubious prospect at best as PPy standalone films have not been observed to be

self-healing, face the same problems associated with 2D films produced via traditional

fabrication methodologies. In addition to the scale issue of produced structures, there

exists a risk of the collagen coating (which rests on top of the PPy film) being removed

from its inkjet-printed position in a bioreactor or in vivo environment due to friction due

to lack of integration or direct interaction between the collagen and PPy components.
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Producing PPy-based constructs using AM techniques has been a challenge, and the

main reason behind this is PPy’s poor processability, in its polymer state (discussed in

2.6.

However, by subjecting the Col-Py ink to freezing temperatures, as printed geometry

of constructs is maintained effectively. Examples of this are reported in Figure 4.3. This

deviation is at the crux of the novel fabrication methodology for 3D printed PPy-based

scaffolds reported in this thesis, because the scaffolding material, i.e. collagen, can

now be exchanged for any other naturally derived or synthetically derived hydrophilic

materials that freeze and solidify when subjected to cold temperatures, like the ones

mentioned in 2.1, namely: dECM, hyaluronic acid, fibrinogen, gelatin, chitosan, etc. In

addition to exchanging the scaffolding base component, the dopant-PPy relationship is

also open to modulation. Dopant species can dictate topography, morphology, electrical

conductivity and other physical properties of PPy-based composites and products (Yan

et al., 2017). For instance, large anionic dopant species tend to be immobile within

the PPy polymer backbone, forcing the electro-activity response of PPy to be cationic

dependent (Otero and Martinez, 2016). This phenomena can be used to sequester drugs

or molecules in the vicinity of the construct, allowing the PPy construct to potentially

serve as a controlled drug release system or as a biosensor (Edmondson et al., 2014;

Entezami and Massoumi, 2006; Koetting et al., 2015; Pillay et al., 2014).

Essentially, the small deviation from traditional fabrication methods now enables

researchers with creative freedom in their product design, as a function of DIW AM. It

creates room for researchers to tailor important functional properties such as biodegrad-

ability, topography, geometric complexity and dimensionality, as well as impart functional

electrochemomechanical properties to their scaffolds and constructs (Guo et al., 2013;

Asti and Gioglio, 2014). The development of this fabrication technique equips re-

searchers with a versatile and valuable tool which opens up new possibilities in tailoring

their in vitro constructs to a range of biomedical applications for studying in vivo tissue
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Table 4.1: Preliminary electrical conductivity measurements using 4-point probe tech-
nique were performed on Col-PPy 1:1 wt% bulk aerogel samples (n=1 per concentration)
polymerized in varying solvents.

Solvent Conductivity (S · cm−1) Elapsed polymerization time (s)
0.5 M Acetic Acid 5.02 × 10−3 60
100% EtOH 5.46 × 10−3 45
diH2O 2.51 × 10−3 69

response and evaluating in vitro cell behaviour following modulation by said constructs.
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Table 4.2: Time elapsed for complete polymerization observed for grid structures (n=1
per concentration) produced at varying Py concentrations. Samples were polymerized
in 100% EtOH is reported.

Sample Elapsed polymerization time (s)
DIW Col-PPy 1:1 wt% 45
DIW Col-PPy 1:2 wt% 40
DIW Col-PPy 1:4 wt% 33

4.1.1 Preliminary Empirical Evaluation Results

Table 4.2 reports the variance in time elapsed for complete polymerization, a qualita-

tive measure, which was observed for 1:1 wt% and 1:2 wt% concentrations of Py are

attributed to insufficient homogenization as the resultant colour change was not seen

to be always reach black, rather a dark brown. Another confounding factor contributing

to insufficient polymerization can be attributed to inadequate freezing prior to the poly-

merization step. During transfer from the cold storage to the polymerization solution, it

was observed that inadequate freezing led to loss in structural integrity for 3D printed

structures post polymerization as well as incomplete polymerization where structures

lacked opacity inherent to PPy constructs. This variability in reproducibility is dependent

on operator influence. However, this can be taken care of with the incorporation of a

cold-bed and remains one of the limitations of this fabrication methodology at this point.

Additionally, these structures were seen to dissolve within a week’s time if sufficient

polymerization was not observed. This was not observed to be the case for Col-PPy 1:4

wt% DIW printed samples, which were observed to undergo polymerization readily and

completely in comparison to other inks. For these reasons, Col-Py 1:4 wt% was chosen

as the ink of choice.
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Figure 4.1: Shear-thinning behaviour is observed for all investigated compositions. No
drastic decrease in viscosity is observed with increase in Py monomer concentration.

4.2 Rheology Results

All compositions showed favourable shear-thinning behaviour typical of DIW inks as

observed in Figure 4.1. Furthermore, print resolution and quality was observed to be

majorly controlled by end-process parameters in the DIW process, rather than Col or Py

concentrations, such as the paste extruder pressure, nozzle height from print bed and

print nozzle diameter. These parameter were then adjusted for optimum paste volume

flow.

Comparisons between theoretical values generated using the methodology outlined

in 3.3.1 against empirical trackwidth data as a function of applied pressures, at various

print speeds for Col-Py 1:4 wt% composition is reported in Figure 4.2. It was empirically

established that the Col-Py inks flowed well at low pressures, ranging from 15–20 psi.

However, process refinement was required for increasing print resolution.
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Figure 4.2: Trackwidths for Col-Py 1:4 wt% inks are empirically compared against
theoretical values generated using the mathematical model reported by Suntornnond
et al. (2016).
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4.2.1 Discussion

In accordance with the model presented by Suntornnond et al. (2016), which correlates

print process parameters such as print speed, nozzle diameter, nozzle length and

applied pressure with track width of material deposited, the power law index (n) for each

of the compositions was determined and used to inform on optimum paste volume flow

rate. If n < 1, the apparent viscosity of the material tends to decrease as shear rate is

increased. This behaviour is indicative of a fluid property called shear thinning (Cross,

1979). All compositions demonstrated favourable shear-thinning behaviour which was in

line with empirical observations of material extruding more uniformly as applied pressure

increased.

Furthermore, in line with work by Suntornnond et al. (2016), print resolution was

observed to be controlled by end-process parameters such as the extruder pressure,

nozzle diameter and print speed but also nozzle height, relative to the print bed. Simply,

if the nozzle was farther away from the print bed, this lead to thinner trackwidths, but a

shorter nozzle height produced trackwidths thicker in size. Another factor influencing

empirical trackwidth values is the anisotropy of the collagen ink, which remains a limiting

factor in achieving uniform trackwidth values. Collagen ink anisotropy from either insuffi-

cient homogenization, insufficient solubilization or due to the self-aggregating property

of collagen if stored at greater than 4◦C for more than two weeks resulted in aggre-

gates which were likely to clog the nozzle. For the aforementioned reasons, a disparity

between empirical and expected trackwidths exists and is reflected in Figure 4.2.

The model used in generating theoretical values assumes that deposited material

retains its as extruded, cylindrical form and that the deposited material does not bleed

out or flatten after deposition. This variability was not observed to be the case for Col-Py

ink and was not effectively predicted by by Suntornnond et al. (2016) as structures not

transferred to the cold storage units quickly enough led to fused extruded tracks (as

shown in Figure A.3).
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4.3 Optical Imaging

Depicted in Figure 4.3 are the types of PPy-based structures and features producible

using the fabrication methodology reported in this thesis. Limitations associated with the

feature resolution for the reported fabrication methodology are similar to those inherent

to all DIW processes Zhu et al. (2016). In addition to being limited by components of the

DIW printer itself, the low viscosity of the ink can undermine the structural integrity of

the printed structures where extruded-widths may be prone to bleeding. Also, structures

that require overhang, as such is the case in Figure 4.3 (a-c), are difficult to produce

effectively as the curing parameters cannot be introduced fast enough to retain as

extruded geometry. This delay in curing parameters is currently without intervention

which serves to limit geometric complexities of producible structures. In the case of

the Col-Py ink, the onset, duration and other components of curing parameters such

as the freezing for collagen and chemical oxidation polymerization for PPy require

further development in the DIW apparatus to allow the creation of more complex 3D

structures. For instance, the use of a cold-bed that freezes extruded materials as it is

deposited could enhance the resolution of printed structures and retention of creation

more complex 3D structures such as overhangs or bridges. Lastly, confocal optical

imaging was performed on cross-sections of collagen standalone and the Col-PPy

1:4 wt% structures, as shown in Figure 4.4. Additional examples of 3D printed structures

are included in Appendix A.2.
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(a) geometric models (b) pre-polymerization (c) post-polymerization

(d) geometric models (e) pre-polymerization (f) post-polymerization

(g) geometric models (h) pre-polymerization (i) post-polymerization

Figure 4.3: Optical images of 3D multilayered Col-PPy 1:4 wt% structures at different
stages of the DIW process are depicted here. (a), (d) and (h) depict geometric models
of 3D pyramid (20% infill), grid (50% infill) and OMASML logo (100% infill) structures,
respectively. (b), (e) and (i) depict optical images of structures as printed, i.e. pre-
polymerization of PPy, and (c), (f) and (i) depict optical images of structures post-
polymerization.
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(a) 20× (b) 50×

(c) 20× (d) 50×

Figure 4.4: Confocal optical imaging was performed at 50× on cryo-fractured monolayer
grid cross-sections of 10 mm × 10 mm × 0.5 mm (a) collagen standalone sample pores,
(b) collagen standalone sample rows, and along the (c) Col-PPy 1:4 wt% sample pores
and (d) Col-PPy 1:4 wt% sample rows to show the degree of polymerization, i.e. collagen
and PPy integration in the DIW printed structure, at the cross-sectional level.
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(a) bulk aerogel (Off) (b) bulk aerogel (On)

(c) fibrous aerogel (Off) (d) fibrous aerogel (On)

Figure 4.5: Electrical conductivity of Col-PPy 1:1 wt% (a-b) bulk and (c-d) fibrous
aerogels is demonstrated using an LED powered by a 9V battery, where the sample
completes the circuit.

4.4 Electro-Conductivity Results
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Table 4.3: Correction factors (Cf ) pertaining to resistivity measurements performed using
4-point probe technique are reported. Cf values are chosen in accordance with the
standards set by Topsoe (1986). * denotes that the average Cf , however, as sample
thickness varied subtly between 3D printed samples, Cf chosen were specific to each
sample’s thickness.

Col-PPy sample type Standard Cf

Bulk aerogel 1:1 wt% Semi-infinite plane sample of finite thickness 0.2686
Fibrous aerogel 1:1 wt% Infinite plane sample of finite thickness 0.36
DIW constructs Infinite plane sample of finite thickness 0.446*

Table 4.4: Electrical conductivity measurements for Col-PPy 1:1 wt% bulk and fibrous
aerogels, and DIW printed Col-PPy 1:1 wt%, 1:2 wt% and 1:4 wt% samples using 4-point
probe technique are reported.

Sample
Max

Conductivity
(S · cm−1)

Min
Conductivity

(S · cm−1)

Mean Conductivity
(S · cm−1)

Bulk aerogel 1:1 wt% 5.90 × 10−3 4.46 × 10−3 3.82 × 10-3 ± 9.32 × 10-4

Fibrous aerogel 1:1 wt% 2.24 × 10−5 1.07 × 10−5 1.70 × 10-5 ± 5.89 × 10-6

DIW Col-PPy 1:1 wt% 2.50 × 10−5 1.51 × 10−6 4.87 × 10-6 ± 4.73 × 10-6

DIW Col-PPy 1:2 wt% 2.93 × 10−5 9.09 × 10−7 6.04 × 10-6 ± 5.08 × 10-6

DIW Col-PPy 1:4 wt% 2.50 × 10−5 2.50 × 10−6 9.06× 10−6 ± 6.50× 10-6
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Figure 4.6: Comparisons for electrical conductivity results between (a) all fabricated
structures, i.e. Col-PPy 1:1 wt% bulk and fibrous aerogels, and DIW Col-PPy 1:1 wt%,
1:2 wt% and 1:4 wt%, as well as a comparison between (b) Col-PPy 1:1 wt% fibrous
aerogels and DIW Col-PPy 1:1 wt%, 1:2 wt% and 1:4 wt% samples are depicted.
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Figure 4.7: A comparison for electrical conductivity results between DIW Col-PPy
1:1 wt%, 1:2 wt% and 1:4 wt% samples are depicted.

(a) (b)

Figure 4.8: Electrical conductivity of Col-PPy1:4 wt% multilayered grids is demonstrated
using an LED powered by a 9V battery, where the sample serves to complete the circuit.
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4.4.1 Discussion

PPy is electrically conductive due to charge transport occurring along the conjugated

polymer chains. Single and double bonds along the polymer chain both contain a

chemically strong, localized σ-bond, while double bonds also contain a less strongly

localized p-bond, where p-orbitals overlap, allowing hopping of charge carriers, i.e.

holes, polarons, and bipolarons (Khalkhali, 2005; Ansari, 2006). Therefore, electrical

conductivity is dependent on the number of charges and their relevant mobility. Since

the polymer is chemically oxidatively synthesized in its oxidized, conducting form only

the incorporation of dopant molecules (typically, large, negative charged and immobile)

stabilizes and neutralizes charge on the polymer backbone (Khalkhali, 2005). The

availability of charges is therefore also influenced by the presence of the dopant anions.

Increasing dopant levels has been shown to increase in the density of charge carriers

and led to the production of conductive PPy films using electrochemical polymerization,

for instance, 5 × 10−2 S · cm−1 (Kupila and Kankare, 1995; Lee et al., 1995).

Li and Khor (1994) reported an electrical conductivity of 1.4 S · cm−1 for their Col-

PPy 1:3.35 wt% precipitates, made from a 2 mg · mL−1 collagen solution. The maximum

conductivity of Col-PPy aerogels reported by Mekonnen et al. (2016) is

3.59 × 10−4 S · cm−1 for their Col-PPy-AQSA 1:1 wt% aerogel composition, whereas

the maximum conductivity of Col-PPy-DBSA 1:1 wt% bulk aerogels was determined

to be 5.90 × 10−3 S · cm−1. This difference in aerogel electro-conductive properties is

attributed to dopant choice, as dopants influence the number of charge carriers on the

polymer backbone contributing to the construct’s electrical conductivity. Interestingly, it

is observed that the size of the construct also influences electrical properties, per the

results in Table 4.4.

One reason as to why the electrical conductivity of 3D printed Col-PPy constructs

does not significantly change as monomer concentration is increased twice-fold or

four-fold may be due to the delay aspect included in this DIW AM methodology used to
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generate the constructs (Figure 4.7). A natural impedance is imparted by the presence

of collagen fibres that may not be sufficiently coated by PPy, i.e. pockets or islands where

the oxidant was unable to reach and polymerize pyrrole sufficiently or where pyrrole

presence was insufficient, despite best homogenization efforts, resulting in lowered

electrical conductivity of the structure.

The aerogels produced using the protocol reported in Mekonnen et al. (2016) exhibit

higher electrical conductivity as do the fibrous Col-PPy constructs. Traditional fabrication

processes such as the one reported in Mekonnen et al. (2016) involve the production

of structures where the scaffolding component blended with Py experiences complete

oxidative polymerization, with size restrictions, while excess is washed away. Whereas,

in the fabrication methodology presented in this paper, all the collagen-Py ink 3D printed

constitutes the entirety of the polymerized scaffold, where polymer chain lengths may

be result in fewer electro-conductive islands in areas of insufficient PPy presence.

This leads to the number of polymer backbones available and contributing to the PPy

structure to not be as well connected as may be the case in the aerogel structures,

therefore presenting as lower electrical conductivity despite the smaller construct size of

the DIW structures. This relationship is reflected in Figure 4.6 and Table 4.4 where size

of the construct seems to influences electrical conductivity.

Although a number of electro-conductive scaffolds and constructs exist in literature,

as discussed in section 2.3.3, variance in biologically relevant outcomes such as prolifer-

ation and apoptosis is observed between cell types and experiments conducted on the

same materials (Love et al., 2018). One reason for why electro-conductive scaffolds have

not seen prominence nor renown is due to this variance in response observed under

similar stimulation parameters on different substrates, or on the exact same substrate

under slightly varied stimulation parameters (Stewart et al., 2015; Merrill et al., 2005;

Men et al., 2010; Song et al., 2002). Another reason electrically conductive constructs

don’t see much light of day is because, as of yet, no gold standard, protocol or plat-
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form exists for parameters on electrically stimulating cells, for each electro-conductive

scaffold or substrate varies in its degree of electrical conductivity generated across the

construct (Love et al., 2018; Shi et al., 2016; Guiseppi-Elie, 2010). This suggests that

although electrical conductivity can serve as an instructive construct for directing cell

behaviour of select cell types under practical electrical parameters and is an effective

means for achieving favourable results such as cell proliferation or stem cell differentia-

tion, dissimilarity between the physical properties and consumed charge of the various

electro-conductive constructs lends to confound workable comparisons and replication

of those results on another construct under the same parameters. This makes difficult to

extrapolate achievements of works investigating electro-conductivity towards translation.

A careful selection and tailoring of the stimulation and physical parameters of the sub-

strate for achieving target outcomes combined with a technique which produces uniform

structures with uniform physical and electrical stimulation properties, for instance, 3D

printing of electro-conductive scaffolds which presently provides uniformity to fabricated

constructs. Therefore, providing a suitable answer towards overcoming the seeming

variances of current findings in literature.

On the other hand, PPy constructs only consume charge when undergoing redox

reactions, i.e. when functioning as an electro-active construct. Despite the decrease

in electrical conductivity of the DIW constructs compared to bulk and fibrous Col-

PPy aerogels, potential parameters can be appropriately adjusted to generate charge

equivalent of past investigations to yield favourable results (Love et al., 2018; Guiseppi-

Elie, 2010; Shi et al., 2016; Lee et al., 2018; Arteshi et al., 2018). Unfortunately,

the application of the DIW PPy-based constructs as an effective means of achieving

electrical stimulation of cells is not addressed in this thesis. This question remains to

be answered by future investigations, however, the framework for creating these 3D

electro-conductive PPy-based substrates is successfully established by this thesis.
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4.5 Electro-activity Characterization Results

4.5.1 Cyclic Voltammetry Results
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Figure 4.9: CV performed on 1.5 cm2 Col-PPy 1:4 wt% samples in (a) DMEM and
0.1 M NaDBS(aq) at 100 mV/s at ±1 V, and (b) DMEM solution at 100 mV/s at ±1 V
demonstrates lowered electro-activity in DMEM solution.
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Figure 4.10: CV performed on 1.5 cm2 samples of (a) Col-PPy 1:1 wt% vs. 1:2 wt%
vs. 1:4 wt% in DMEM at 100 mV/s. (b) Col-PPy 1:4 wt% in DMEM at 100 mV/s, up to
500 cycles. (c) Col-PPy 1:4 wt% in DMEM, for various scan rates, at ±1 V. (d) Col-PPy
1:4 wt% in DMEM for different potentials at 100 mV/s.



www.manaraa.com

CHAPTER 4. CHARACTERIZATION OF DIW COL-PPY CONSTRUCTS: PART 1 140

3 4 5 6 7 8 9 10

Scan rate  [ mV/s]

1

2

3

4

5

6

7

8

9

C
u
rr

e
n
t 
[A

]

10
-5

Col-PPy 1:1 wt%

Col-PPy 1:2 wt%

Col-PPy 1:4 wt%

Figure 4.11: Peak anodic potentials for each of the Col-PPy compositions tested reveals
the existence of an upper limit to the extent of electro-activity available from each PPy
concentration under electrochemical switching.
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Discussion

PPy-based constructs are well-suited as electro-active systems as the mechanism

underlying this property of PPy allows for incorporation of charged ions during polymer-

ization, and subsequent release of incorporated anionic and cationic molecules under

electrical stimulation (Wadhwa et al., 2006; Kulkarni and Biswanath, 2007; Uppalapati

et al., 2016; Tandon et al., 2018). This mechanism is outlined in section 2.5.2. Potential

of the DIW Col-PPy constructs as vehicles of delivering therapeutic agents and as

novel drug-delivery systems capable of directing cell behaviour is established in this

section. These systems could serve as therapeutic alternatives where typical drug

delivery systems might fail. For instance, traditional drug delivery measures tend to be

administered at the tissue level or are administered to select clusters of cells. PPy-based

drug delivery systems are currently being investigated for potential in targeting cells

via novel substrates that release drugs in a spatiotemporal manner to study individual

cellular behaviour in response to local and temporal drug release in vitro (Uppalapati

et al., 2016). This holds significant applications in arenas of research concerned with

disease modelling and drug testing.

Even with the small decrease in the peak currents as the Col-PPy 1:4 wt% sample

is run up to 500 cycles, no dramatic loss in peak currents is observed. Additionally, a

linear relationship was found for scan rates between 20 m V/s and 75 m V/s and peak

currents when the anodic peak current was plotted against the square root of scan rates

for Col-PPy 1:1 wt% and Col-PPy 1:4 wt%, but not for Col-PPy 1:2 wt%. This suggests

that electrochemical process of the constructs are kinetically controlled and can be

manipulated for biosensing applications, however, a working range of electro-activity

within the hydrogel-PPy blended constructs serves as a limiting factor, as suggested by

Col-PPy 1:2 wt% which observed loss of electro-active capability as scan rate increased

(Figure 4.11). Results from CV investigations collectively suggests that electro-activity

from DIW Col-PPy materials can be expected, as well as one that can be controlled
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under varied potential parameters (as shown in Figure 4.10 (c) and Figure 4.10 (d)).

The electro-active properties of DIW Col-PPy constructs can be therefore be applied

and designed to function as patterned biosensors or devices capable of drug release

(Otero and Martinez, 2016; Ravichandran et al., 2010). Additional figures are included

in Appendix A.3 to provide CV results for each of the investigated Col-PPy composition.

CV experiments indicated that each of the three concentrations of Py monomer

retained their electro-active properties, with Col-PPy 1:1 wt% reaching the most ca-

pacitance. The nearest comparison in literature is the recent work by Liu et al. (2011)

where they reported no significant decrease in electro-activity after the inclusion of

Type I collagen into their electrochemically polymerized CS-PPy films. The generated

capacitance of DIW Col-PPy constructs is greater than that of CS-PPy and CS-Col-PPy

films fabricated by Liu et al. (2011) and similar to heparin–PPy composite’s developed

by Garner et al. (1999).

CV was performed to evaluate the reversibility of the redox reactions occurring in

the system and whether switching between redox states was occurring in a repeatable

manner. Since these materials are intended for use in biological fluids, DMEM media,

was chosen to elucidate the electrochemical activity of this composition under modular

electrical stimulation conditions, whereas the NaDBSA solution was chosen to elucidate

PPy electrochemical activity in the presence of reduced number of species serving as

the active electrolyte in solution. Figure 4.9 suggests that although the capacitance of

the Col-PPy constructs is reduced in physiological media, i.e. DMEM, effective charge

transport is still present as DMEM serves as the electrolyte solution.

Despite the natural impedance offered by the presence of collagen, CV comparisons

between constructs with differing concentrations of Py (Figure 4.10 (a)) at constant

potential parameters and scan rates indicate that the no dramatic decrease in polymer

electro-activity occurs. However, a reduction in current amplitude is observed as Py

concentration in the blend is increased. No drastic decrease in electro-activity is
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observed between the three PPy concentrations (Figure 4.10 (a)). However, electro-

activity does decrease as PPy concentration in the construct increases. This likely due

to a shortening of polymer chain segments serving as electro-active sites on the WE

surface, suggesting an upper limit to the strain the hydrogel component of the construct

can withstand exists, before PPy chains which serve as electro-active sites could be

disconnected or shortened presenting as decreased electro-activity.

Overall, the quasireversible nature of redox reactions associated with PPy is ob-

served to be retained within the DIW printed constructs. Effective electrochemical

switching of electro-active sites is demonstrated and seen to increase to a maximum,

and subsequently maintained over extended periods of time, specifically for 500 cycles,

as depicted in Figure 4.10 (b). As the polymer is reduced, anionic sites form which

cause cation ingress or anion egress and charge stabilization, while the opposite phe-

nomena occurs when the polymer is oxidized. The increase in capacitance as a result

of extended electrical stimulation as indicated by the change in amplitude of anodic and

cathodic peaks after 100 cycles of stimulation suggests that ion mobility increases as the

sample is electrically stimulated over an extended period of time. A further breakdown of

this evaluation shown in Figure A.3 indicates the DIW Col-PPy 1:4 wt% sample begins

to stabilize by the 75th cycle of testing. One reason for this response despite all other

parameters being held consistent is that electrical stimulation over longer periods of

time leads to the formation or at least exposure of new ion channels in the construct

(Price et al., 2012). This presents as enhanced electro-activity and sensing capabilities.

Additionally, Figure 4.11 suggests an optimization of the synchrony between collagen

and PPy can lead to the development of biosensors of modular sensitivity.
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4.5.2 Spectrometry Results
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Figure 4.12: Averaged absorbance profiles for electrically stimulated samples in
100 mg · mL−1 MB dye are depicted. (a) depicts the observed effects of applying
alternate ± 1 V electrical stimulation to DIW Col-PPy 1:4 wt% samples, (b) depicts the
observed effects of applying alternate electrical stimulation of ± 1 V and the effects of its
absence, in alteration to each or both testing stages, on DIW Col-PPy 1:4 wt% samples.
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Figure 4.13: Average concentration of MB dye released in response to variable potential
parameters is reported.
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Figure 4.14: Sample deviation for the concentration of MB dye released in response to
variable electrical stimulations is reported.
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Discussion

The work presented in the previous chapter established the potential of DIW Col-

PPy constructs as novel, 3D printed electrochemically controlled drug delivery/release

systems, which could effectively serve to emulate the bioactive property of the cellular

micro-environment. Consequently, spectrometry experiments were conducted to further

demonstrate the application of DIW Col-PPy constructs. Reported concentration values

of MB dye are likely underestimated and do not represent the actual amount of MB

dye being released upon electrical stimulation. Although the volume between the first

stage and the second stage is held constant at 12 ml, results are underestimated

as higher volumes at the second stage would serve to dilute any amount of MB dye

being released from the Col-PPy sample. Where, use of lower volumes would result in

higher absorption spectroscopy measurements, and perhaps more closely represent the

amount of MB dye being released. However, sufficient volume to submerge WE and CE

and to effectively apply electrical stimulation across the sample is required. Therefore,

volume of MB dye and fresh diH2O at the first and second stage are held consistent.

Since the amount of MB dye being taken up at the first stage of the experiment is

not discernible from the current experimental setup, no relationship between potential

parameters nor can a claim be made towards the efficacy of the fabricated constructs as

electrochemically controlled drug release systems can be made. However, despite the

inability to affirm the amount of MB dye being taken up and released, results collectively

suggest that application of a positive potential at the first stage results in the greater

release of MB dye at the second stage compared to the application of a negative

potential (as observed in Figure 4.12 (a)). Results also suggest that leeching in the

absence of electrical stimulation at the second stage and passive adsorption in the

absence of electrical stimulation at the first stage are about five-fold lower than when

electrical stimulation is an applied variable (Figure 4.13).

To overcome the limitations of the experimental setup utilized, future investigations
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could employ CV and spectrometry in concert. This would be useful in elucidating the

kinetics of the redox reactions involved in MB dye capture and release. Investigations

can also be expanded to other molecules of consequence such as therapeutic drugs,

glucose or any another species of interest to evaluate the efficacy of the 3D printed

constructs as electrochemically controlled drug release systems. Results reported in

this section establish that potential for application of the constructs fabricated using the

AM technique developed in this thesis as biosensors and as electrochemically controlled

drug release systems exists.

4.6 Chapter Summary

This chapter established that all compositions of the Col-Py ink demonstrated favourable

shear-thinning behaviour, exist as stable blends and could be DIW printed for creating

structures with internal and geometric complexity, as shown by optical imaging, at desired

resolution by modulating printing process parameters. Next, potential application of the

fabricated DIW PPy-based hydrogels as electro-conductive constructs was established

and electro-conductivity was observed to be associated with structure size. Lastly,

potential applications of fabricated DIW Col-PPy structures as drug delivery/release

systems was established by CV experiments, which demonstrated repeatable electro-

activity, and by spectrometry experiments, which demonstrated cationic dye uptake and

release.
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Chapter 5

Characterization of Direct-ink Write

printed Collagen and PPy-based

constructs: Part 2

This chapter investigates the retention of other applications pertaining to PPy-based

constructs. Potential application of Col-PPy constructs as a bioactuator for studying

mechanotransduction effects in 3D cell culture settings is evaluated by assessing

actuation performance in response to electrochemical switching. Physical properties

of the DIW constructs are evaluated by performing tensile tests, SEM imaging and

elemental mapping. Lastly, cyto-compatibility is evaluated by culturing human BJ

fibroblast cells on the PPy-based constructs for an extended period of time.

5.1 Actuation Profiling Results

5.1.1 Grid Actuation Performance

Shown in Figure 5.4 are the results from this experiment. In Figure 5.4 (a), positive

potential stimulation for 5 min resulted in increase of % area change for two pores, while

155
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Figure 5.1: Background noise associated solution change is detected in the absence of
electrical stimulation.

the opposite effect was seen for the third pore, whereas in the absence of positive

potential stimulation % area change was observed to drift and then return almost to

0% area change around 500s after electrical stimulation was halted. In Figure 5.4

(b), negative potential stimulation for 5min predominately resulted in % area change

decreasing. Contrary to Figure 5.4 (a), % area change was not observed to drift in

the absence of electrical stimulation rather it continued to oscillate in the negative %

area change range. These preliminary investigations established that actuation profiles

were more representative of the applied electrical stimulation under waveform potential

rather than continuous, despite the variable actuation behaviour disparity observed in all

experiments between pores of the same sample. At this point, it became impertinent to

establish if actuation response could be directed in a controlled manner by manipulating

potential parameters.
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Figure 5.3: A comparison between (a) manual tracing of grid sample pores, and using
(b) internal threshold algorithms within Fiji to determine % area changes for a DIW
Col-PPy 1:4 wt% sample, stimulated at 0.00833 Hz frequency, at ±1 V, is reported.
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Figure 5.4: A comparison between continuous electrical stimulation of (a) +1 V (b) −1 V
and consequent % area changes for DIW Col-PPy 1:4 wt% samples is reported.
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Figure 5.5: The actuation results of a DIW Col-PPy 1:4 wt% sample are separated
to depict (a) the first 13 min, i.e. 0–780s, and (b) 30 min later, i.e. 1700–2100s, at
0.00833 Hz frequency, at ±1 V.
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Figure 5.6: A comparison between electrical stimulating DIW Col-PPy 1:4 wt% samples
for (a) 0V to −1 V and (b) ±1 V is presented.
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Figure 5.7: The actuation profile of a DIW Col-PPy 1:2 wt% monolayer grid sample
electrically stimulated for approx. 1 h is reported.
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Figure 5.8: The actuation profiles of a DIW Col-PPy 1:2 wt% monolayer grid samples
electrically stimulated for at the same potential parameters as Col-PPy 1:4 wt% samples.
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Figure 5.9: The actuation profile of a 25 mg · mL−1 collagen standalone DIW grid sample
under the working potential parameters.
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Discussion

Typical shape-shifting behaviours of actuators in literature presents as changes in the

topography and morphology of the constructs, for instance: folding, bending, twisting,

and linear or nonlinear expansion and contraction of films or membranes, typically

electrochemically polymerized (Svennersten et al., 2011; Jager et al., 1999; Farajollahi

et al., 2016; Küttel et al., 2009; Melling et al., 2013; Madden et al., 2004; Hara et al.,

2006). PPy-based constructs capitalizes on its ion exchange mechanism to create

actuators capable of performing work. This actuation mechanism holds potential as

means of imparting mechanical stress and changing a construct’s physical properties

such as substrate elasticity (Smela and Gadegaard, 2001; Holst et al., 2010; Price et al.,

2012; Wu et al., 2007).

The monolayer aspect of Col-PPy 1:4 wt% grids was chosen to simplify assessments

on whether detected volume change occurred uniformly throughout the grid construct or

whether it was occurring in a spatiotemporal manner, which would present as variable

actuation along the internal pores of the construct. A more complex, 3D structure would

have made it difficult to assess and model the spatiotemporal aspect of the observed

actuation response. The scope of this investigation was limited to assessing actuation

ability and resulting potential applications.

Preliminary investigations with Col-PPy 1:4 wt% monolayer grid samples informed

subsequent experimental parameters. During these preliminary investigations, irregu-

lar actuation response was observed by samples despite being stimulated at variable

frequencies, potentials and waveforms. Over the course of investigations, some phenom-

ena were observed to be irregular in terms of actuation response. (1) a delay in sample

actuation frequency in response to electrical stimulation frequency is present, and (2)

pores seem to respond to electrical stimulation variably, i.e. some pores experience

increase in % area change while others experience a decrease. Instances of these

phenomena from preliminary investigations are shown in Figure 5.2.
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The delay in sample actuation response frequency is expected as it has been

previously established that it takes about 30s for PPy electro-active sites to begin

respond and presenting bulk behaviour as more electro-active sites are exposed over

stimulation time, and subsequently decreasing this delay by responding faster (Otero

and Martinez, 2016; Smela and Gadegaard, 2001; Smela, 2003; Wang et al., 2004).

However, contrary to other PPy-based electrochemically polymerized films studied for

actuation potential, this sample actuation response frequency was not observed to

recover nor stabilize over the period of observation. Initially, this irregular actuation

response behaviour was attributed to background noise associated with the changing of

solutions, i.e. from the diH2O storage solution to one of greater osmolarity.

Col-PPy 1:2 wt% monolayer grid samples were investigated under the same po-

tential parameters as Col-PPy 1:4 wt% monolayer grids to determine if the irregular

actuation response phenomena and its characteristics were restricted to the Col-PPy

1:4 wt% monolayer grids alone. This was not observed to be the case as the irregular

actuation response observed during preliminary investigations with Col-PPy 1:4 wt%

monolayer grid samples was persisted in Col-PPy 1:2 wt% concentration samples as

well (Figure 5.8). Irrespective of location on the sample, pores of the grid were observed

to undergo variable expansion and contraction despite electrical stimulation parameters

being held consistent across samples, similar to what was observed during preliminary

investigations for samples experiencing volume change due to change in osmolarity

(Figure 5.1) and despite changes in waveform and frequency (Figure 5.2), as well as for

samples under variable applied potential (Figure 5.3 (a) and Figure 5.6 (b)).

For samples undergoing electrical stimulation over extended periods, a shift towards

slowed actuation response, when stimulated for extended periods of time. A delay in

sample actuation frequency is introduced as stimulating the samples for a longer time

periods, which only serves to further the discrepancy between the applied potential

frequency and sample actuation response frequency. One possible reasoning behind
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this response was referred to the relatively short time frame of observation, i.e. typically

13 min. Therefore, both Col-PPy 1:2 wt% and 1:4 wt% grid and collagen standalone

monolayer grid samples were electrically stimulated for greater than 30 min to determine

if the actuation response stabilized overtime. This was detected to not be the case, as

indicated by Figure 5.5, Figure 5.7 and Figure 5.9.

The next set of experiments connected to test results shown in Figure 4.13. In

preliminary experiments, potential was applied as over-potentials and continuously (Fig-

ure 5.4). Despite potential being held constant for that allotted time, i.e. in the absence

of electrochemical switching, each pore experiences the third phenomena observed

to be prevalent in all samples. Specifically, a rebound-like phenomena which presents

as oscillatory volume change, contrary to expectations where continued application

of electrical stimulation would render PPy electro-active sites less likely to return to

their original state (Otero and Martinez, 2016). To assess whether the rebound-like

phenomena resulting in oscillatory actuation behaviour would prevail over any and all

potential parameters, a square waveform between 0V and −1 V at 0.00833 Hz was

applied to a Col-PPy 1:4 wt% monolayer grid sample (Figure 5.6 (a)). Results from

this experiment indicate that the rebound-like phenomena presents as slight relaxation

(±2%) of the sample, and cannot be attributed to periods where the sample experiences

absence of electrical stimulation as previous investigations where electrical stimulation is

held constant also displayed this third phenomena. This third phenomena was observed

across all samples, experimental parameters and for each pore of the same sample

investigated, even for the time periods for which electrical stimulation is held constant or

switched, but one that is not associated in literature with PPy. Therefore, the collagen

component of the Col-PPy blend is cited as the most likely guilty constituent of the two.

In addition to observing % area changes in response to potential applied, it was also

important to view current changes in response to potential applied, as they reflect the

amount of electro-active sites contributing to the observed response and undergoing
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redox processes. For all experimental conditions, it was observed that the first cycle of

electrical stimulation generated the least current throughout the experiment, however,

subsequent cycles quickly established a stabilization of the current which was kept

nearly constant from cycle-to-cycle following the stabilization (Figure 5.10). Voltage

vs. current vs. time data implies that the bulk number of electro-active sites on the

entirety of the sample contributing to the measured current are either held consistently

in electro-activity or undergo no drastic changes cycle-to-cycle. However, majority of the

% area change vs. voltage vs. time data indicate that for actuation in a spatiotemporal

manner is not repetitive, as adjacent pores of the same sample do not demonstrate

a homogenous actuation pro-life. Miniaturization of the experimental setup and DIW

printed samples perhaps would work to allow a closer examination of the relationship

between changes in generated current and volume change. However, at the time of this

thesis, this was not accomplished in this study due to unavailability of facilities at hand.

For the grid samples, actuation response as a result of electrical stimulation is

occurring; however, it is one that cannot be effectively modelled nor predicted, for it is

not occurring in a homogenous nor repeatable manner. The mechanism that underlies

actuation response of PPy-based constructs is the same that enables electro-activity.

For this composition, the actuation response is postulated to be predominately cationic

dependent, as an effect of DBSA inclusion during the polymerization step. Therefore, the

polymer contracts in its oxidized state, i.e. when a negative potential is applied, as cations

egress, and expands in its reduced state, i.e. when a positive potential is applied, as

cations ingress. This is supported by CV, spectroscopy and grid actuation results as bulk

response of the structure favours one mode of behaviour over the other. However, the

second observed phenomena, that is, pores of the same sample responding to electrical

stimulation variably in the form of expansion or contraction resulting in increase or

decrease in % area change, suggests that variable actuation direction between adjacent

pores of the same sample can be due to inadequate DBSA doping during polymerization.
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This notion of inadequate doping is supported by Figure 4.14, where displays select

samples (under opposite electrical stimulation of ±1 V) releasing similar amounts of

MB. Inadequate doping would sufficiently explain the irregular actuation response

observed for both Col-PPy 1:2 wt% and 1:4 wt% concentrations, at varying potential and

frequency parameters. Additionally, as this irregular actuation response is not typical of

PPy-standalone constructs, collagen presence in the hydrogel composition may indeed

serve as the impeding factor responsible for the rebound-like behaviour. However,

the exact mechanism underlying this behaviour requires focused examination. EDAX

elemental mapping was also conducted on 3D printed grid constructs to satisfyingly

address the question of inadequate doping (section 5.2). At this point, DIW Col-PPy grid

structures are not a feasible route for studying mechanotransduction effects.
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Table 5.1: The swelling ratios of Col-PPy 1:4 wt% samples 1, 2, and 3 referenced in
Table 5.2 were measured prior to performing actuation tests and are reported here.

Sample Length ( mm) Width ( mm) Cross-section ( mm)
1 1.488 2.702 1.442
2 1.966 1.943 1.316
3 3.006 1.438 1.388

Average 1.982± 0.7764 1.899± 0.6362 1.380± 0.0629

Table 5.2: Bilayer actuation performance for Col-PPy 1:4 wt% and PDMS bilayers
in DMEM media are reported. These bilayers experienced square waves of varied
potentials at 0.00833 Hz. ∗ denotes the samples which did not follow the orientation
depicted in Figure 3.9.

Sample number Potential parameters Initial angle Final angle ∆ angle
1* Square ±1 V 53◦ 57◦ 4◦

2* Square ±1 V 99◦ 102◦ 3◦

3 Square ±1 V 87◦ 74◦ 13◦

4 Square ±2 V 74◦ 70◦ 4◦

5* Square ±2 V 115◦ 126◦ 11◦

6* Square +1 V, -2 V 112◦ 118◦ 6◦

7 Square +1 V, -2 V 65◦ 62◦ 3◦

8* Square +0.2 V, -0.8 V 98◦ 103◦ 5◦

9 Square ±3 V 72◦ 70◦ 2◦

10 Square ±1 V 69◦ 67◦ 2◦

11 Square ±1 V 78◦ 75◦ 3◦

12 Square ±1 V 90◦ 53◦ 37◦

13* Square ±1 V 53◦ 55◦ 2◦

5.1.2 Bilayer Actuation Performance
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Figure 5.11: The tip displacement of actuated Col-PPy 1:4 wt% and PDMS bilayers in
response to electrical stimulation shows overall increased, sustained displacement over
time in both working solutions.

Table 5.3: Bilayer actuation performance for Col-PPy 1:4 wt% and PDMS bilayers in
0.1 M NaDBS(aq) solution are reported. These bilayers experienced square waves
of varied potentials at 0.00833 Hz. ∗ denotes the samples which did not follow the
orientation showed in Figure 3.9.

Sample number Potential parameters Initial angle Final angle ∆ angle
1* Square ± 1 V 107◦ 110◦ 3◦

2 Square +2 V, -1 V 133◦ 115◦ 18◦

3 Square ± 2 V 115◦ 102◦ 13◦

4 Square ± 1 V 43◦ 23◦ 20◦

5 Square +2 V, 0 V 84◦ 64◦ 20◦
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Figure 5.12: Typical current flow of Col-PPy 1:4 wt% and PDMS bilayers from applying
±1 V at 0.00833 Hz shows similar current behaviour observed for Col-PPy 1:4 wt% grid
structures.
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Discussion

For the bilayer, PDMS serves to function as the passive layer while Col-PPy construct

serves as the electro-active portion of the bilayer. Expansion or contraction of the

electro-active component manifests as bending motion (Jager et al., 1999; Farajollahi

et al., 2016; Melling et al., 2013). For evaluations conducted in DMEM media (Table 5.2),

application of higher potentials resulted in greater actuation as shown by the difference

in angle change (∆ angle) between samples 1 and 2 against sample 3. However, tip

displacement measurements in both solutions was observed to respond predominately

to oxidizing potentials. Additionally, regardless of amplitude of applied potential, the

bending actuation favoured contraction over expansion (Figure 5.11). Samples continued

to contract in response to the oxidizing (positive) potential and seemed unaffected for

multiple cycles by the reducing (negative) potential which resulted in angle decreasing

towards the Col-PPy side of the bilayer, relative to the schematic shown in Figure 3.9.

For DMEM media solution experiments (Table 5.2), it was noticed that potentials

above ± 2.4 V resulted in electrolysis on both the working and counter electrode,

as was the case for sample 9,. Therefore, all electrical stimulation parameters for

subsequent evaluations remained below ± 2.4 V. Samples 6 and 7 were subjected to a

higher oxidizing potential compared to the reducing potential to determine whether the

observed actuation effect would be balanced by applying a higher reducing potential.

This parameter was adapted as the bilayers seemed to be entirely unresponsive to

oxidizing potentials, and predominately underwent contraction.

Similar to the difference in angle change (∆ angle) observed for bilayers in DMEM

media solution, application of higher potentials resulted in greater actuation in the

NaDBS (aq) solution as well. This is demonstrated by the difference between samples

1 against sample 2 and 3 (Table 5.3), which represent the same bilayer actuated in

both solutions. Similar to the actuation seen in DMEM media solution, regardless of

amplitude of applied potential, the bending actuation response also seemed to favour
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contraction over expansion. Table 5.3 shows that sample 5 was electrically stimulated

only in the oxidative direction. This was done to determine whether applying a higher

oxidative potential and subsequent absence of it in succeeding cycles would lead to drift

or recovery of the bilayer towards its original state (Figure 5.12 (a)). This was not seen

to be the case, rather the bilayer continued to contract and the current (Figure 5.12 (b))

also increases over time. This indicates that the number of electro-active sites available

and contributing to the observed effect keep increasing as electrical stimulation is cycled;

however, in all likelihood, an upper limit to the number of electro-active sites responding

exists. Although sample-to-sample variability exists, anisotropy of collagen fibres in the

bilayer may be undercutting bilayer actuation. Another factor confounding results is the

length of the bilayer, which varied from sample-to-sample.

Although constructs when 3D printed and even post-polymerization retained their

uniformity/as-printed morphology, fabricated samples were dried over a 48 h period to

allow adequate PDMS to cure onto Col-PPy 1:4 wt% samples used to fabricate the

bilayers. This lead to variable drying of samples resulted in varying sample sizes. For

smaller samples in DMEM, the degree of bending averaged at 2–6◦, whereas larger

constructs underwent angle change (∆ angle) greater than 10◦ and in one case up to

37◦. Samples in NaDBS solution managed greater degrees of expansion for almost

all samples, regardless of bilayer length, compared to actuation tests conducted in

DMEM solution. This behaviour is attributed to the presence of the dopant in the

working solution, which increases doping of the construct and therefore increasing

cation-dependent actuation. The relationship between ∆ angle, bilayer length and

potential parameters is shown in Figure B.1, which in concert with the inadequate

doping hypothesis suggests no direct relationship between angle change and bilayer

length exists.

The one-sided preference, that is, contraction for the Col-PPy portion of the bilayer,

is similar to an effect observed for some ionic polymer-metal composites (IPMC) where
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the composite quickly bends towards the anode or cathode and experiences slow

back-relaxation, i.e. return to neutral position, irrespective of potential (Nemat-Nasser,

2002). As discussed by Nemat-Nasser (2002), in IPMCs this effect is dependent on

the chemical properties of ionic polymer, the size of ions that form a boundary layer

near the anode or cathode during electrochemical switching and degree of hydration.

In the case of Col-PPy constructs, samples were sufficiently hydrated prior to testing.

The behaviours observed in these bilayers, i.e. continuous expansion and no back

relaxation, suggest that the polymer is not sufficiently releasing cationic species from

the polymer backbone once potential is cycled in the opposite direction or that osmotic

pressure as a consequence of PPy’s actuation mechanism is no longer the dominant

force in these structures. Another possible reason for the lack of back-relaxation is

attributed to the presence of collagen fibres in the construct, which serve to function as

an impedance and have minimal electrical conductivity and piezoelectric properties but

in this case may be deformed by the electrostatic forces stimulating PPy (Fukada and

Yasuda, 1964; Ahn and Grodzinsky, 2009). The scale of the construct also seems to

have an influence on the actuation capabilities of the fabricated constructs where grid

samples were observed to undergo unrepeatable volume change, but volume change as

expansion and contraction, while the bilayers are predominately experiencing contraction.

Therefore, further vigorous investigations toward studying the mechanical actuation

response associated with PPy-based hydrogel constructs is warranted. Consequently,

one method for compensating lack of back-relaxation in this Col-PPy composition would

be to create patterned actuators that function in an antagonistic manner, therefore,

effectively cancelling out this limitation (Fleming et al., 2012).
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5.2 SEM Results
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(a) damp, 42× magnification (b) damp, 2 000× magnification

(c) dry, 23× magnification (d) dry, 2 000× magnification

Figure 5.13: SEM of DIW Col-PPy 1:4 wt% grid structures conducted at low magnifi-
cations for (a) damp and (c) dried shows the collapse of topographical features upon
dehydration. Adequate retention of porosity is observed when samples were compared
under (b) damp conditions and (d) dry conditions at 2 000× magnification.
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(a) Collagen standalone, 50× (b) Collagen standalone, 200× (c) Collagen standalone, 2 000×

(d) Col-PPy 1:1 wt%, 50× (e) Col-PPy 1:1 wt%, 200× (f) Col-PPy 1:1 wt%, 2 000×

(g) Col-PPy 1:2 wt%, 50× (h) Col-PPy 1:2 wt%, 200× (i) Col-PPy 1:2 wt%, 2 000×

(j) Col-PPy 1:4 wt%, 50× (k) Col-PPy 1:4 wt%, 200× (l) Col-PPy 1:4 wt%, 2 000×

Figure 5.14: SEM of dehydrated DIW collagen standalone and DIW Col-PPy 1:1 wt%,
1:2 wt%, 1:4 wt% structures reveals retention of collagen’s fibrillar nature, whereas
increasing PPy concentration indicates increased porosity.
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(a) Collagen standalone, 200× (b) Collagen standalone, 600×

(c) Col-PPy 1:1 wt%, 200× (d) Col-PPy 1:1 wt%, 600×

(e) Col-PPy 1:2 wt%, 200× (f) Col-PPy 1:2 wt%, 600×

(g) Col-PPy 1:4 wt%, 200× (h) Col-PPy 1:4 wt%, 600×

Figure 5.15: SEM of cross-sections of DIW collagen standalone constructs and Col-PPy
1:1 wt%, 1:2 wt%, 1:4 wt% structures reveal the PPy blends with collagen, while no
drastic loss in internal porosity is observed.
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(a) Collagen standalone, 16 000× (b) Collagen standalone EDAX

(c) Col-PPy 1:1 wt%, 16 000× (d) Col-PPy 1:1 wt% EDAX

(e) Col-PPy 1:2 wt%, 600× (f) Col-PPy 1:2 wt% EDAX

(g) Col-PPy 1:4 wt%, 500× (h) Col-PPy 1:4 wt% EDAX

Figure 5.16: Elemental mapping of cross-sections of collagen standalone and Col-PPy
1:1 wt%, 1:2 wt%, 1:4 wt% structures suggests insufficient dopant presence.
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(a) Spectrum 1, 500× (b) Spectrum 1, EDAX

(c) Spectrum 2, 500× (d) Spectrum 2, EDAX

(e) Spectrum 3, 500× (f) Spectrum 3, EDAX

Figure 5.17: Elemental mapping of cross-sections of Col-PPy 1:4 wt% samples suggests
variance in dopant presence for adjacent areas of the same sample.
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Table 5.4: Collagen standalone and Col-PPy DIW printed constructs were evaluated for
their elemental composition via EDAX for sites shown in Figure 5.16 and Figure 5.17.
Cross-sections of Col-PPy 1:4 wt% and collagen standalone were specifically evaluated
for iron presence and sulphur presence corresponding to oxidant and dopant presence,
respectively.

Composition [wt%]

Site C O Fe S

Collagen standalone (Spectrum 2) 63.77 34.16 0.00 0.00
Col-PPy 1:1 wt% (Spectrum 1) 63.38 31.14 2.58 0.66
Col-PPy 1:2 wt% (Spectrum 2) 68.96 24.99 2.78 0.92
Col-PPy 1:4 wt% (Spectrum 1) 61.91 26.23 3.65 1.59
Col-PPy 1:4 wt% (Spectrum 2) NA 52.29 16.31 10.86
Col-PPy 1:4 wt% (Spectrum 3) 58.68 15.75 17.79 2.37
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5.2.1 Discussion

SEM imaging was performed on these dehydrated samples to qualitatively evaluate

differences in degree of porosity and morphology between the hybrid and collagen

standalone structures due to increasing PPy presence. Greater porosity was observed

for the PPy-based structures, relative to the collagen sample, despite flattening of the

Col-PPy constructs once the samples were dried (Figure 5.14). With the exception of the

Col-PPy 1:2 wt% sample, which was observed to have undergone greater dehydration

than other samples, resulting in considerable flattening which is reflected in decreased

topography and porosity compared to collagen standalone and Col-PPy 1:1 wt% or

1:4 wt%.

EDAX results suggest that although sulfur (indicative of the DBSA molecule) is

present in the Col-PPy 1:1 wt%, 1:2 wt% and 1:4 wt%, it is not nearly enough to

reflect the concentration used during the polymerization step of the fabrication process.

Additionally, Figure 5.17 suggests large degree of variance even in adjacent areas. EDAX

elemental mapping results are inconsistent with elemental analysis results reported by

Jayamurgan et al. (2013) who observed approximately 5% sulfur presence when the

same concentration of DBSA was used during the chemical oxidative PPy polymerization

process.

One possible reason for this discrepancy is attributed to the difference in scale of

structures produced which influences inclusion of the dopant molecules. Jayamurgan

et al. (2013) were able to produce powder particles of varied sizes, typically 200nm,

which held smaller surface area and also greater infiltration of dopant molecules solvated

in the solution into fabricated structures, therefore greater inclusion of the dopant in the

nano-particles is reported. Whereas, the structures produced in this study are 1000×

larger in scale. Specifically, convection and diffusion forces govern oxidant and dopant

interaction with pyrrole monomers and oligomer chains embedded with the collagen

fibres during the polymerization step of the fabrication process. Obtaining uniform
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dopant-levels throughout the structures warrants additional investigation.
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Figure 5.18: Stress versus strain curves of samples tested in wet/submerged and
unsubmerged conditions are reported.

5.3 Mechanical Characterization Results

As the aim of the previous section was to establish whether the 3D printed constructs

held potential for stimulating mechanotransduction effects, this section studies the effects

of varying Py monomer concentration in the DIW ink, the effect of hydration and the

effect of electrical stimulation on the 3D printed constructs’ elasticity and stiffness.
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Table 5.5: Calculations pertaining to tensile testing performed on (a-c) samples with
increasing PPy concentration, (d) unsubmerged samples, (e-f) samples under electrical
stimulation are reported.

Sample E (KPa)
Max

Strain
UTS

(KPa)

Fracture
Stress
(KPa)

Yield
Strength

(KPa)
(a) 1:1 wt % 114.5 296.6 21.7 32.9 32.9
(b) 1:2 wt % 115.1 359.1 37.5 41.8 37.5
(c) 1:4 wt % 120.0 360.0 43.8 45.2 43.8
(d) 1:4 wt % Unsubmerged 203.9 200.7 35.5 42.4 40.8
(e) 1:4 wt % Oxidized 78.5 320.0 31.6 32.4 31.6
(f) 1:4 wt % Reduced 79.1 291.2 50.0 53.2 48.4
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Figure 5.19: Stress versus strain curves demonstrating the effect of (a) increasing PPy
concentration and (b) applying electrical stimulation are reported.
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5.3.1 Discussion

For collagen-like hydrogels, curing method, either physical or chemical, and conditions

of the hydrogel’s curing process, such as concentration of the scaffolding material and

environmental parameters as pH, temperature and ionic strength of the working solution,

majorly influence elastic properties of the fabricated construct. Achilli and Mantovani

(2010) reported that mechanical properties such as microstructure, degree of gelation

and size of fibrils of the collagen hydrogel can be influenced by interchanging the three

aforementioned fabrication conditions, however, such changes only elicited ± 0.2 to

0.05 MPa change in the E value.

In addition to the influence of the method of mechanical evaluation, another impactful

factor is the curing agent, or simply, the method of inducing collagen cross-linking.

Chemical cross-linkers such as glutaraldehyde, microbial transglutaminase (MTGase),

PEG succinimidyl glutarate, and genipin have been reported to greatly influence collagen

hydrogel stiffness as E values ranged from 20 MPa to 0.6 MPa. However, freeze-drying

was the curing method opted for the collagen portion of the Col-PPy construct in this

thesis as chemical cross-linking agents have been observed to induce cyto-toxicity

effects, host immunogenicity and high resistance to collagenase enzymatic digestion

(Delgado et al., 2015, 2017). In addition to the fabrication parameters that can be

modulated to control the physical properties of collagen constructs, the inclusion of PPy

indicates an increase in mechanical integrity and material toughness (Figure 5.19 (a)).

The retention of the electro-active properties of PPy which work to change the bulk

physical properties of the construct as a result of electrical stimulation is demonstrated

in Figure 5.19 (b).

It is important to note that collagen standalone constructs, which were fabricated

to serve as the control against Col-PPy constructs and inform on the effect of Py

inclusion to the collagen scaffolding base material, were observed to collapse under

their own weight after rehydration. Collagen standalone dog bone samples were prone



www.manaraa.com

CHAPTER 5. CHARACTERIZATION OF DIW COL-PPY CONSTRUCTS: PART 2 190

to bending and doubling over which necessitated repositioning and manual flattening

prior to mounting on to the Univert tester. However, this manoeuvring resulted in tearing

of the sample and made impotent any efforts for evaluating tensile properties of the

fabricated samples, without exception. This behaviour is attributed to the thickness of

the 3D printed construct, but one that was observed not to be a problem for Col-PPy

constructs.

Results from tensile testing corroborate empirical observations from sample handling

that weakening of the mechanical properties of construct presents as PPy concentration

decreases. Results demonstrate the tailor-ability and dynamic nature of the 3D printed

constructs fabricated using the protocol presented in this thesis. The bulk physical prop-

erties of 3D printed constructs can now be adapted for tissue engineering applications in

vitro and beyond. By changing scaffolding material (collagen, in this case) concentration,

PPy concentration or by simply applying variable electrical stimulation, the physical

properties of the construct are apt to changing in concert with its shape as established

by Figure 5.2. However, additional studies are required to further understand and profile

the extent of influence PPy imparts, under electrical stimulation, to change volume and

elasticity/stiffness of the 3D printed hybrid structures.
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(a) 2nd row junction (b) 3rd row junction

(c) corner at Z-height-1 (d) corner at Z-height-2

Figure 5.20: Hoescht stained human BJ fibroblast on DIW printed Col-PPy 1:4 wt% grid
samples imaged demonstrated cell attachment and cell survival at 96h following initial
cell seeding, at 20× magnification.

5.4 Cyto-compatibility Results

5.4.1 Preliminary evaluation

A pilot study to evaluate cyto-compatibility was performed where human BJ fibroblast

cells cultured on 3D printed Col-PPy 1:4 wt% samples underwent immunocytochemical

staining of Hoechst stain to visualize cell nuclei. Cels were observed to survive up to

4 days of culture. During the imaging process, fibroblasts were observed to occupy

multiple Z-heights even in the same visual field, suggesting that sizeable deviations in

topography must exist for hydrated constructs as this feature quality is not detectable

using SEM imaging. This phenomena is depicted in Figure 5.20 (c) and (d).
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5.4.2 Extended cyto-compatibility evaluation
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5.4.3 Confocal Laser Scanning Microscopy Results
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(a) Collagen overview (b) Collagen juncture (c) Collagen corner

(d) CLSM of collagen overview (e) CLSM of collagen juncture (f) CLSM of collagen corner

(g) Col-PPy overview (h) Col-PPy juncture (i) Col-PPy corner

(j) CLSM of Col-PPy overview (k) CLSM of Col-PPy juncture (l) CLSM of Col-PPy corner

Figure 5.23: Confocal imaging of (a-c) collagen standalone and (g-i) Col-PPy 1:4 wt%
samples, and CLSM topographic analysis of (d-f) collagen standalone and (j-l) Col-PPy
1:4 wt% samples is depicted.
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5.4.4 Discussion

With the DIW printing Col-PPy fabrication methodology presented in this thesis, PPy-

based hydrogel constructs are now no longer restricted in feature and geometric com-

plexity. Therefore, adding design-ability to the list of attributes associated with favourable

properties of PPy-based constructs. Extended cell culture experiments established

that the novel DIW fabrication methodology developed in this thesis produces Col-PPy

constructs which retains the cyto-compatible aspect associated with Col-PPy constructs

fabricated using traditional methodologies.

As evidenced by continued fibroblast confluence at each measured time point, for

both sets of experiments. One observed phenomena differentiating collagen standalone

and Col-PPy constructs is a clumping feature of actin fibres on Col-PPy samples,

present at each of fixation/imaging time points. Whereas, collagen standalone samples

observed an elongation of actin fibres over time. This stark difference in behaviour

is attributed to the natural epitopes present on collagen constructs contributing to

observed difference in fibroblast behaviour (Boyce et al., 1988; Chattopadhyay and

Raines, 2014; Aziz et al., 2016). Another explanation for said behaviour of actin filaments

may be due to mismatching of the physical properties to that of the fibroblast’s tissue

of origin, that is, skin. In contrast, PPy inclusion to collagen samples was observed to

increase material stiffness (section 5.3). A deviation from the physical properties of the

construct to one that would keep fibroblasts proliferating and explorative is attributed

to this phenomena (Peyton and Putnam, 2005; Skardal et al., 2012; Nam et al., 2016).

Additionally, the combined use of high concentrations of both PPy at 1:4 wt% and

collagen at 25 mg · mL−1 compared to that of most investigations which utilize collagen

as standalone or collagen with Py at 2 − 3 mg · mL−1 may serve to explain observed

clumping behaviour on constructs containing PPy (Achilli and Mantovani, 2010; Delgado

et al., 2015, 2017; Sung et al., 2004; Weng et al., 2012; Mekonnen et al., 2016; Ketabat

et al., 2017; Ravichandran et al., 2018).
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Additional investigation to study effects of modulating scaffolding base and PPy

concentration on consequent physical properties of constructs to provide edification

for parameter under which cells of interest are geared towards biologically relevant

outcomes such as proliferation and anoikis. Findings from said investigation would

inform future researchers, who aspire to implement functional properties of PPy to static

constructs, to the limits of the hybrid construct as a function of PPy inclusion, as well as

inform them of the range to which the hybrid PPy-based construct’s physical properties

can be modulated under electrical stimulation.

Similar to observations of the preliminary investigation, cells were observed to

occupy multiple Z-heights in the same visual field, implicating topographical deviations

which must be contributing to increased surface roughness, more so near the internal

junctions and corners of the construct. This was not observed to be the case for collagen

standalone samples during imaging, however, the lack of opacity of collagen standalone

samples could be a confounding factor. In collagen standalone samples, fibroblasts

were observed to infiltrate into the substrate during imaging. The degree of infiltration

was not quantified. However, qualitatively, this infiltration is apparent in collagen samples

as translucency of the sample allows fluorescent cells to be adequately captured via

imaging. Increased diffusion of stain fluorescence over time is attributed to the assertion

of infiltration, as imaging parameters of the microscope were held consistent.

In the case of the Col-PPy samples, infiltration could not be observed as it would

require fibroblasts to display motility, which requires an exercise of actin filaments. Al-

though actin elongation is not observed, topographical features of the Col-PPy construct

are observed to be well-occupied as fibroblast cells confound the same visual field

by taking up residence at different Z-heights. For this reason, obtaining clear images

at higher magnifications for Col-PPy samples presented a challenge, as stained cells

above and below the imaged area, for any one Z-height, would confound image cap-

ture by increasing fluorescence diffusion. This notion was observed to be present but
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marginally less impactful for image acquisition for the collagen standalone samples at

the same magnification. Additional studies which exploit the functional properties of PPy,

for instance, electro-activity/volumetric change, would provide interesting edification

on how electrical stimulation can impart mechanical changes in material stiffness and

consequent effect on cell morphology and behaviour. For instance, eliciting changes in

behaviour that transition cells from extant/homeostatic to anoikis or back to homeostasis

before anoikis onset (Humphrey et al., 2014; Kollmannsberger et al., 2018).

Lastly, CLSM was used to provide topographic contrast and to supplement SEM

imaging, as SEM imaging required samples to be sufficiently dried which understated

topographical properties and surface roughness of constructs. As well as corroborate

empirical observations of image acquisition post-immunocytochemical staining of colla-

gen standalone and Col-PPy 1:4 wt% samples. Empirical observations during image

acquisition suggested Col-PPy 1:4 wt% samples held greater surface roughness and

topographical features compared to collagen standalone samples, especially at the

junctures. This is confirmed by CLSM results shown in Figure 5.23.

5.5 Chapter summary

This chapter investigated cyto-compatibility and the physical properties of DIW Col-PPy

constructs. The capability of constructs as a bioactuators for studying mechanotransduc-

tion effects in 3D cell culture settings as 3D printed structures and bending bilayers was

assessed and deemed to warrant further investigation before actuation performance can

be realized for applications. Physical properties of the DIW constructs were measured

by tensile tests, SEM imaging and elemental mapping and are reported in this chapter.

Lastly, cyto-compatibility is qualitatively established by culturing human BJ fibroblast

cells on the PPy-based constructs for an extended period of time. In this chapter, poten-

tial of the 3D printed Col-PPy constructs as another addition to the library of materials
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and methods employable to study and evoke biologically relevant cellular responses and

behaviour is established.
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Chapter 6

Concluding Remarks

6.1 Summary of conclusions

This thesis explored issues inherent to traditional fabrication methods of PPy-based con-

structs which made it difficult to adapt AM methods. This thesis effectively combined PPy

with an ECM protein using a DIW AM method for the development of novel designable,

electro-active and electro-conductive Col-PPy 3D structures. Produced structures were

evaluated for their electrical conductivity for potential as electro-conductive hydrogel

constructs, for their electro-active capabilities for potential as drug delivery release sys-

tems and their actuation performance and cyto-compatibility for potential as bioactuators

and as platforms for studying mechanotransduction effects in cell culture settings. The

knowledge ascertained from these activities has prompted the following conclusions:

1. Traditional fabrication methods, specifically chemical oxidative polymerization, for

creating PPy-based structures were explored for integration with AM techniques,

specifically DIW 3D printing. Traditional fabrication methods for PPy-based hydro-

gel constructs were observed to produce structures of limited form, i.e. aggregates,

and fibrous or bulk hydrogel constructs. Therefore, traditional fabrication meth-

ods for creating PPy-based hydrogel constructs were not compatible with AM

205
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technology.

2. A novel DIW AM fabrication methodology which adapts traditional fabrication

methods was developed. This process entailed the use of collagen and Py as a

monomer as the DIW ink and evaluation of favourable shear-thinning character-

istics. The major revision to traditional fabrication methods is the inclusion of a

delay aspect, that is, by subjecting produced structures to freezing temperatures,

to effectively retain pre-meditated geometrical features of 3D printed structures.

3. Col-PPy structures produced from this fabrication methodology were evaluated for

the retention of favourable properties associated with PPy structures produced via

traditional fabrication methodologies. Properties such as electrical conductivity,

electro-activity, actuation capability, and cyto-compatibility were evaluated.

4. The potential of 3D printed PPy-based constructs as a designable, 3D multifaceted,

dynamic platform capable of imparting modifiable electrical, mechanical and

chemical stresses to its environment, for the purpose of emulating the native

cellular micro-environment’s unique properties in a combinatory manner and

observing concurrent cell behaviour, is established.

6.2 Summary of contributions

This research makes a contribution to scientific knowledge in the form of new methodol-

ogy and new evidence. The most significant research contributions presented in this

thesis are summarized as follows:

• The first-ever study to characterize the rheological properties of Col-Py blend as a

DIW ink. This thesis demonstrates that Col-Py DIW inks, at varying concentrations

of Py, exist as stable blends presenting shear-thinning behaviour as a function of

increasing shear rates.
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• Development of a novel DIW fabrication methodology for producing PPy-based

structures is reported. This is the first ever-study to ameliorate traditional fabrica-

tion methods of PPy-based hydrogel constructs with an AM technique.

• An apparatus for the freeze-drying of 3D printed PPy-based constructs was

developed to serve the final step in the fabrication methodology reported in this

thesis. Not only does this freeze-dryer increase the mechanical properties of the

hydrogel construct by inducing cross-linking of the scaffolding constituent, it also

removes trapped polymerizing oxidant/solvent particles that would otherwise have

remained constricted within the construct. By effectively increasing porosity of the

freeze-dried DIW printed PPy-based constructs, the number of sites available and

contributing to the construct’s electro-activity are increased.

• The first-ever study to show that DIW printed Col-PPy constructs exhibit all of

the properties inherent to standalone PPy constructs, i.e. cyto-compatibility, me-

chanical stability, electro-activity and electro-conductivity; properties that are open

to modulation by incorporation of different dopants, and scaffolding components.

Tailoring of these synthesis parameters will lead to the fabrication of novel DIW

printed PPy-based constructs with practical applications in biomedicine and tissue

engineering.

• The first-ever study to suggest the favourable properties of 3D printed ECM-

protein and PPy-based constructs can be used in concert, i.e. in a combined

manner, to impart electrochemomechanical stimulation. The efficacy of the DIW

printed constructs to potentially study and modulate biologically relevant outcomes

such as proliferation, apoptosis, anoikis, stem cell differentiation and disease

pathophysiology using the favourable properties discussed and demonstrated in

this thesis in future studies is demonstrated.
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6.3 Recommendations for future research

It is important to keep in mind the endgame goals for the specific type of technology

being presented in this thesis. The DIW fabrication methodology presented in this

thesis provides the framework for producing 3D PPy-based hydrogel structures. That

is, an instructive platform cells of any type of to be cultured onto in an in vitro, ex-

tended cell culture setting. Rather than in an isolated manner, future projects which

build on the work presented in this thesis can now evaluate the effect of combinatory

electrochemomechanical stimulation. The platform introduced in this thesis is shown to

be capable of allowing future researchers to capitalize on the electro-conductive and

electro-active properties of PPy-based constructs. Cells of interest to tissue engineers

and researchers, ranging from stem cells to cancerous cell types, can be cultured onto

the said platform, then stimulated in a manner which utilizes on the electro-conductive

and/or electro-active properties of the PPy-based constructs, followed by observing and

profiling consequent cell behaviour. Building a library of such profiles of cell behaviour in

response to stimulation on the DIW printed PPy-based constructs on a standardized cell

culture platform effectively tackles the variability in cell behaviour attributed to changing

the materials used to build instructive platforms capable of directing cell behaviours,

differentiation, migration, apoptosis, etc. The formation of such a library would lead

future researchers to realize aforementioned biologically relevant outcomes and design

constructs to support clinically relevant outcomes.

A key advantage of this methodology is the design freedom it enables the researcher

via AM workflow. With DIW printing, in addition to rheological properties of the DIW

ink, the resolution of printable structures is also limited by the 3D printing apparatus.

Future work focused towards initiating ink curing as material is deposited on the print

bed, for instance, in the form of a cold print-bed, would provide valuable contribution

towards further increasing the resolution and complexity of printable structures, while
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decreasing operator-based variance. Although DIW printed structures were observed

to undergo complete polymerization, under the right conditions, the semi-frozen state

of the structure during chemical oxidation polymerization, one that is fundamental to

the polymerization process, is attributed to be serving as the limiting factor to dopant

infiltration. Therefore, limiting PPy presence in the final construct. A future study

focused on optimizing the polymerization process parameters would provide valuable

edification on the maximum yield of electro-active and electro-conductive capabilities of

DIW structures, fabricated using the developed AM methodology.

Additionally, PPy-based constructs have been demonstrated to be capable of modu-

lating cellular behaviours such as proliferation and maturation via integration with both

naturally-derived and synthetically derived polymers. The DIW fabrication methodology

reported in this thesis allows exchange of the scaffolding base/hydrogel component of

the PPy-based construct with any of the materials PPy has been demonstrated to be

well-integrated with, including but not limited to: HA, CS, silk, PLGA, chitosan, alginate,

PLA, PLLA, PLGA, chitin, and agarose (Donderwinkel et al., 2017; Romero et al., 2014;

Di Felice et al., 2015; Park et al., 2015; Gudapati et al., 2016; Kim et al., 2016; Hur

et al., 2014; Yang et al., 2018; Elieh-Ali-Komi and Hamblin, 2016; Jia et al., 2013). In

addition to adapting materials that have been successfully combined with PPy, it would

be interesting to investigate the integration of dECM with PPy, as most constituents of

native ECM (i.e. collagen, HA, CS, etc.) have been successfully combined with PPy to

provide favourable stimulus responsive constructs. It would be interesting to evaluate

the integration of a material so close in constitution to native ECM and observe its

electro-conductive and electro-active properties of PPy.

Second to the hydrogel component in importance to the fabrication process is the

dopant. Dopant choice directly impacts the functional properties of PPy and PPy-

based constructs, but also their biodegradability, immunogenicity, topographic, chemical

and mechanical properties (Babensee et al., 1998; Mattioli-Belmonte et al., 2003;
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Armentano et al., 2010; Wang et al., 2004, 2017; Fonner et al., 2008; Ramanaviciene

et al., 2010; Kunzmann et al., 2011; Yen et al., 2010; Tandon et al., 2018; Shi et al., 2014).

Investigations with dopants of interest would yield in tailorable electro-conductivity and

electro-activity profiles for constructs, which while maintaining similar composition would

allow constructs to be tailored to the specific application at hand, as dopant inclusion

can be mediated via electrochemical switching post-polymerization.

For DIW fabricated Col-PPy grid structures, actuation was observed to be present,

but not in repeatable manner. Therefore, at this point, actuation mechanism of Col-PPy

cannot be modelled or applied in a predictable manner. This response was attributed to

the impedance imparted by the hydrogel component, that is, collagen. Other materials

may not observe the same restriction. Investigations with other hydrophilic polymers

such as those that directly interact and PPy can be doped with, such as CS, may

not exhibit such behaviour and can be evaluated as an effective means for studying

mechanotransduction effects using designable, DIW printed constructs on various cell

types (Björninen et al., 2014; Lee et al., 1995).

Another interesting application of PPy-based actuators involves depositing PPy on

one site of a hydrogel to serve as the functional coating, and collectively as a bilayer

actuator (Ismail et al., 2011). A future study which compares the actuation profile of

hydrogel structures, 3D printed or fabricated using traditional methods, with PPy coatings

against 3D printed hydrogel-PPy blended structures would inform which methodology

results in higher actuation capability, or whether the observed actuation response is

confounded when 3D printed hydrogel-PPy blended structures are augmented with PPy

coating.

One of the interesting properties of PPy is its intrinsic electro-conductivity. At the

conclusion of this thesis, DIW printed 3D Col-PPy structures can be evaluated for

practical applications as designable, electro-conductive substrates and studying cell

behaviour in response to varied electrical stimulation and varied substrate composition.



www.manaraa.com

LIST OF REFERENCES 211

DIW printed 3D Col-PPy structures can be used as a platform for studying the effects of

electrical stimulation on electrically responsive cell types, including: cardiac cells, smooth

muscle cells, neural cell types, as well as neuroprogenitor cells. Although, Col-PPy

constructs as means for imparting mechanical stimulation was not established, potential

for expecting such stimulation from 3D printed PPy-based constructs was established.

Future studies should investigate materials from which actuation mechanism can be

better modelled. After achieving this, future researches should study changes in cell

behaviour and phenotype as a consequence of applying electrical stimulation (as a

result of PPy’s electro-conductivity), mechanical stimulation or chemical stimulation (as

a result of PPy’s electro-activity), or in a combinatory manner, including but not limited

to stem cell lineage committance.
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Appendix A

Expanded Results from Chapter 4

A.1 Stoichiometry of the oxidant and dopant

Stoichiometry of the oxidizing agent, i.e. ferric (III) chloride (FeCI3), was acquired
from seminal work done by (Armes, 1987). They reported that the optimum reaction
conditions for the polymerization of Py by FeCI3 in aqueous solutions is 2.38 ± 0.04,
at pH>1.5. Conjugating polymers only consume current when undergoing structural
change, and due to poor electrical to mechanical energy conversion they have very low
actuating speed and efficiency (Smela (2003)). However, the incorporation of dopants
is known to modulate topographical, electrical and mechanical properties. DBSA was
chosen for as the dopant because the PPy-DBSA actuation mechanism has been
well-reported in literature to be representative of oxidation (p-doping) with exchange of
cations (Carpi, 2016; Wang and Smela, 2008; George et al., 2005). In addition to being
shown to be cyto-compatible, the actuation strain of PPy-DBS films of 150 −−300 nm
thickness and bilayers was shown to reach 2–10% (Yan et al. (2017); Kivilo et al. (2016);
Smela and Gadegaard (2001); Wang et al. (2004)). This matches well with the strain
collagen fibers can handle (Dong and Lv (2016)). Others have reported that although
higher concentrations of DBSA increased surface roughness, thermal stability and PPy
solubility in inorganic solvents (such as m-cresol), it also been shown to decrease the
electrical conductivity of PPy-DBSA constructs (Jayamurgan et al., 2013; Fahlgren et al.,
2015). Therefore, dopant concentration was chosen in accord with well-established
works reported by Bjorklund (1987).

A.2 Additional collagen and PPy-based structures

216
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(a) bulk aerogel (b) fibrous aerogel

(c) powder aggregates at 5 mg · mL−1 (d) powder aggregates at 150 mg · mL−1

Figure A.1: Optical imaging was performed on structures evaluated for DIW AM feasibility
(as outlined in section 3.2.1) produced using traditional chemical oxidative polymerization
fabrication methods, including (a) Col-PPy 1:1 wt% Bulk aerogels of 6 mm diameter,
(b) Col-PPy 1:1 wt% fibrous aerogels of indeterminate size, and Col-PPy 1:1 wt% powder
aggregates dispersed using ultra-sonication at (c) 5 mg · mL−1 and (d) 150 mg · mL−1.
Said structures demonstrated incompatibility of traditional fabrication methods with DIW
AM.
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(a) 3.5 mm · s−1 at 15 psi

(b) 5.0 mm · s−1 at 15 psi

(c) 7.5 mm · s−1 at 15 psi

Figure A.2: Examples of S-shaped structures DIW printed relating to Figure 4.2 for
verification of rheological modelling and optimization of extrusion parameters are shown
using optical imaging.
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(a) overview of 2-layered grid structure (b) side-view of 2-layered grid structure

(b) 2-layered grid post-polymerization (c) 4-layered grid post-polymerization

Figure A.3: The consequences of delayed curing of the Col-Py DIW ink is demonstrated
via a comparison of Col-PPy 1:4 wt% (50% infill) 2-layered grid structure (50% infill) at
(a, b) pre-polymerization, and (c) post-polymerization, with (d) a Col-PPy 1:4 wt% (50%
infill) 4-layered grid post-polymerization using optical imaging.
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(a) (b) (c)

Figure A.4: The degree of polymerization, i.e. in terms of collagen and PPy integration,
in the DIW printed Col-PPy 1:4 wt% 4-layered structure (50% infill) evaluated using
optical imaging reveals no layering artifacts nor the presence of un-polymerized areas
at the cross-sectional level.

(a) 2-layers (b) 3-layers

(c) 4-layers (d) 5-layers

Figure A.5: Optical imaging was performed on a Col-PPy 1:4 wt% 5-layered pyramid
structures (20% infill, 20% reduction of area per additional layer) to evaluate feasibility
of DIW printing structures with overhang and bridges.
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Figure A.6: CV comparisons performed in DMEM and 0.1 M NaDBSaq solutions reveal
the effect of dopant inclusion in the working solution on sample electro-activity, where
Col-PPy 1:1 wt% observe greatest capacitance.

A.3 Expanded results on Cyclic voltammetry
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Figure A.7: CV comparisons between ± 1 V and −0.8 V; 0.2 V in DMEM for (a) Col-
PPy 1:1 wt%, (b) Col-PPy 1:2 wt%, (c) Col-PPy 1:4 wt% reveal electro-activity can be
controlled acutely by potential parameters.
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Figure A.8: 500 cycles of CV were run on (a) Col-PPy 1:1 wt%, (b) Col-PPy 1:2 wt%, (c)
Col-PPy 1:4 wt% in DMEM at 100 mV/s for ± 1 V.
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Figure A.9: CV comparisons between Col-PPy samples in DMEM run at (a, c, e) ± 1 V
and (b, d, f) −0.8 V; 0.2 V potentials at different scan rates reveals highest capacitance
is observed by (a, b) Col-PPy 1:1 wt% samples as scan rate increases.
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Figure A.10: Peak anodic potentials for each of the Col-PPy compositions for ± 1 V and
−0.8 V; 0.2 V reveals potential parameters influence the activation of electro-active sites
contributing to bulk capacitance during electrochemical switching.
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Figure A.11: CV performed on 1.5 cm2 samples of Col-PPy 1:4 wt% in DMEM at
100 mV/s was observed to stabilize within 75 cycles of evaluation and to maintain
electro-activity for up to 500 cycles of testing (Figure 4.10).
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Figure A.12: Individual samples forming (a, b) absorbance results and (c, d) concentra-
tion calculations of Col-PPy 1:4 wt% sample MB dye adsorption and release in response
to electrical stimulations for noted potential parameters are reported.

A.4 Expanded results on Spectrometry analysis
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(a) Figure 5.1 (b) Figure 5.2 (a)

(c) Figure 5.2 (b) (d) Figure 5.2 (c)

Figure B.1: Annotations of Col-PPy 1:4 wt% grid sample pores corresponding to % area
change evaluations conducted in section 5.1.1 are shown for (a) Figure 5.1 and (b, c,
d) Figure 5.2.
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(a) Figure 5.3 (b) Figure 5.5

(c) Figure 5.6 (a) (d) Figure 5.6 (b)

Figure B.2: Annotations of Col-PPy 1:4 wt% grid sample pores corresponding to % area
change evaluations, as indicated, conducted under varying potential parameters are
reported.

(a) Figure 5.7 (b) Figure 5.8 (a) (c) Figure 5.8 (b)

Figure B.3: Annotations of Col-PPy 1:2 wt% grid sample pores corresponding to % area
change evaluations, as indicated, conducted under varying potential parameters are
reported.
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(a) Figure 5.9 (b) Figure 5.4 (a) (c) Figure 5.4 (b)

Figure B.4: Annotations of (a) collagen standalone grid samples and (b, c) Col-PPy 1:4
wt% grid sample pores corresponding to % area change evaluations, as referenced,
conducted under varying potential parameters are reported.
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Table B.1: Bilayer actuation performance results for Col-PPy 1:4 wt% and PDMS bilayers
in DMEM media are reported. These bilayers experienced square waves of varied
potentials at 0.00833 Hz.* denotes the samples which did not follow the orientation
showed in Figure 3.9.

Sample
Potential
parameters

Initial
angle

Final
angle

Initial
length
(mm)

Final
length
(mm)

∆ Length
(mm)

∆ angle

1* Square ± 1 V 57◦ 53◦ 12.26 12.28 0.02 4◦

2* Square ± 1 V 99◦ 102◦ 2.84 12.89 0.05 3◦

3 Square ± 1 V 115◦ 126◦ 30.58 31.59 1.01 11◦

5* Square ± 2 V 65◦ 62◦ 12.8 12.7 0.1 3◦

6*
Square +1 V,
-2 V

112◦ 118◦ 25.92 25.76 0.16 6◦

7
Square +1 V,
-2 V

100◦ 106◦ 8.9 8.4 0.5 6◦

8*
Square
+0.2 V, -0.8 V

87◦ 74◦ 7.14 7.14 0 13◦

10 Square ± 1 V 69◦ 67◦ 6.18 6.3 0.12 2◦

12 Square ± 1 V 90◦ 53◦ 3.74 3.53 0.21 37◦

B.2 Expanded results on bilayer actuation
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Table B.2: Bilayer actuation performance results for select Col-PPy 1:4 wt% and PDMS
bilayers in 0.1 M NaDBS(aq) solution are reported. These bilayers experienced square
waves of varied potentials at 0.00833 Hz.* denotes the samples which did not follow the
orientation showed in Figure 3.9.

Sample
number

Potential
parameters

Initial
angle

Final
angle

Initial
length
(mm)

Final
length
(mm)

∆

Length
(mm)

∆ angle

1* Square ± 1 V 107◦ 110◦ 14.27 14.13 0.14 3◦

2
Square +2 V,
-1 V

133◦ 115◦ 33.24 32.1 1.14 18◦

3 Square ± 2 V 115◦ 102◦ 29.97 29.8 0.17 13◦

4 Square ± 1 V 43◦ 23◦ 3.85 4.41 0.56 20◦

5
Square +2 V,
0 V

84◦ 64◦ 8.86 9.17 0.31 20◦
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Figure B.5: Tensile stretch with CellScale Univert tester on a SHORE 10A silicone
rubber (McMaster-Carr, catalog# 9010K13) revealed instrument artifacts contributing to
tensile data measurements.

B.3 Expanded results on tensile testing
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Appendix C

Copyright Permissions

The following pages provide confirmation of acquired copyright permissions for the
appropriate referenced figures in this thesis. Included is a table summarizing the
copyright information, followed by excerpts of the relevant emails. The table presents the
figure permissions as they appear in the thesis. The excerpts are provided as figures.
They are cropped to remove any personal information and only outline the copyright
permission. Note that copyright permission from The Royal Society of Chemistry
publications is provided based on the conditions outlined in the relevant statement
below.

Figure C.1: Copyright permission statement from The Royal Society of Chemistry
publications.
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Figure C.2: Copyright permission information for license number 4506450572163.
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Figure C.3: Copyright permission information for license number 4461490307459.
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Figure C.4: Copyright permission information for confirmation number 11762270.
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Figure C.5: Copyright permission information for confirmation number 11763538.
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